IEEE Trans Med Imaging. 2014 Jan;33(1):117-34. doi: 10.1109/TMI.2013.2282370. Epub 2013 Sep 17.
Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.
双能 X 射线 CT(DECT)相较于传统 CT 具有提高对比度和减少伪影的潜力。此外,通过将基于模型的迭代重建(MBIR)应用于双能数据,也可以期望降低噪声并提高分辨率。然而,双能 MBIR 的直接实现需要使用非线性正向模型,这会增加复杂性和计算量。或者,已经使用了简化的正向模型,这些模型分别处理物质分解的通道,但这些方法并没有完全考虑通道中的统计相关性。在本文中,我们提出了一种联合双能 MBIR(JDE-MBIR)的方法,该方法在考虑物质分解谱线组件的完整统计相关性的同时简化了正向模型。JDE-MBIR 方法通过使用多色对数似然的二次近似和图像域中的简单但精确的非负约束来工作。我们证明,当 DECT 系统使用快速 kVp 切换时,我们的方法特别有效,因为在这种情况下,该模型考虑了插值谱线条目不准确的情况。幻影和临床结果均表明,与以前基于分解的方法(包括 FBP 和其他统计迭代方法)相比,所提出的模型生成的图像在质量上具有优势。