Suppr超能文献

基于低秩和平均图合并 BM3D 的迭代谱 CT 重建。

Iterative spectral CT reconstruction based on low rank and average-image-incorporated BM3D.

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.

出版信息

Phys Med Biol. 2018 Aug 6;63(15):155021. doi: 10.1088/1361-6560/aad356.

Abstract

In a photon counting detector integrated spectral CT scanner, the received photons are counted in several energy channels to generate the corresponding projections. Since the projection in each energy channel is generated using part of the received photons, the reconstructed channel image suffers from severe noise. Therefore, image reconstruction in spectral CT is considered to be a big challenge. Because the inter-channel images are all from the same object but in different energy bins, there exists a strong correlation among these images. Moreover, it is suggested that there are similarities among various patches of CT images in the spatial domain. In this work, we propose average-image-incorporated block-matching and 3D (aiiBM3D) filtering along with low rank regularization for iterative spectral CT reconstruction. The aiiBM3D method is based on filtered 3D data arrays formed by similar 2D blocks using the mapped version of the average image obtained from linear regression. The reconstruction procedure consists of two main steps. First, the alternating direction method of multipliers is employed to solve the problem with low rank regularization where the goal is to exploit the correlation in inter-channel images. Second, our proposed BM3D-based algorithm is applied to all the channel images to make use of the redundant information in the spatial domain and inter-channel. The two steps repeat until the stopping criteria are satisfied. The proposed method is validated on numerically simulated and preclinical datasets. Our results confirm its high performance in terms of signal to noise ratio and structural preservation.

摘要

在光子计数探测器集成能谱 CT 扫描仪中,接收的光子在几个能量通道中被计数以生成相应的投影。由于每个能量通道中的投影是使用部分接收的光子生成的,因此重建的通道图像会受到严重的噪声干扰。因此,能谱 CT 中的图像重建被认为是一个巨大的挑战。由于各个通道的图像都是来自同一个物体,但在不同的能量bins 中,这些图像之间存在很强的相关性。此外,有研究表明,在空间域中,CT 图像的各个斑块之间存在相似性。在这项工作中,我们提出了基于平均图像的块匹配和 3D(aiiBM3D)滤波以及低秩正则化的迭代能谱 CT 重建方法。aiiBM3D 方法是基于使用从线性回归得到的平均图像的映射版本的相似 2D 块形成的滤波 3D 数据阵列。重建过程包括两个主要步骤。首先,使用交替方向乘子法求解具有低秩正则化的问题,目标是利用通道间图像的相关性。其次,我们提出的基于 BM3D 的算法应用于所有通道图像,以利用空间域和通道间的冗余信息。这两个步骤重复进行,直到满足停止条件。该方法在数值模拟和临床前数据集上进行了验证。我们的结果证实了该方法在信噪比和结构保持方面的高性能。

相似文献

3
Noise suppression-guided image filtering for low-SNR CT reconstruction.基于噪声抑制的图像滤波在低 SNR CT 重建中的应用。
Med Biol Eng Comput. 2020 Nov;58(11):2621-2629. doi: 10.1007/s11517-020-02246-1. Epub 2020 Aug 24.

引用本文的文献

本文引用的文献

1
GPU-based Branchless Distance-Driven Projection and Backprojection.基于图形处理器的无分支距离驱动投影与反投影
IEEE Trans Comput Imaging. 2017 Dec;3(4):617-632. doi: 10.1109/TCI.2017.2675705. Epub 2017 Feb 28.
4
Tensor-Based Dictionary Learning for Spectral CT Reconstruction.基于张量的字典学习用于光谱CT重建
IEEE Trans Med Imaging. 2017 Jan;36(1):142-154. doi: 10.1109/TMI.2016.2600249. Epub 2016 Aug 12.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验