Suppr超能文献

全球对近期寨卡病毒爆发的反应:大数据分析的见解

Global reaction to the recent outbreaks of Zika virus: Insights from a Big Data analysis.

作者信息

Bragazzi Nicola Luigi, Alicino Cristiano, Trucchi Cecilia, Paganino Chiara, Barberis Ilaria, Martini Mariano, Sticchi Laura, Trinka Eugen, Brigo Francesco, Ansaldi Filippo, Icardi Giancarlo, Orsi Andrea

机构信息

Department of Health Sciences, University of Genoa, Genoa, Italy.

Hygiene Unit,"Ospedale Policlinico San Martino IRCCS" teaching hospital, Genoa, Italy.

出版信息

PLoS One. 2017 Sep 21;12(9):e0185263. doi: 10.1371/journal.pone.0185263. eCollection 2017.

Abstract

OBJECTIVE

The recent spreading of Zika virus represents an emerging global health threat. As such, it is attracting public interest worldwide, generating a great amount of related Internet searches and social media interactions. The aim of this research was to understand Zika-related digital behavior throughout the epidemic spreading and to assess its consistence with real-world epidemiological data, using a behavioral informatics and analytics approach.

METHODS

In this study, the global web-interest and reaction to the recently occurred outbreaks of the Zika Virus were analyzed in terms of tweets and Google Trends (GT), Google News, YouTube, and Wikipedia search queries. These data streams were mined from 1st January 2004 to 31st October 2016, with a focus on the period November 2015-October 2016. This analysis was complemented with the use of epidemiological data. Spearman's correlation was performed to correlate all Zika-related data. Moreover, a multivariate regression was performed using Zika-related search queries as a dependent variable, and epidemiological data, number of inhabitants in 2015 and Human Development Index as predictor variables.

RESULTS

Overall 3,864,395 tweets, 284,903 accesses to Wikipedia pages dedicated to the Zika virus were analyzed during the study period. All web-data sources showed that the main spike of researches and interactions occurred in February 2016 with a second peak in August 2016. All novel data streams-related activities increased markedly during the epidemic period with respect to pre-epidemic period when no web activity was detected. Correlations between data from all these web platforms resulted very high and statistically significant. The countries in which web searches were particularly concentrated are mainly from Central and South Americas. The majority of queries concerned the symptoms of the Zika virus, its vector of transmission, and its possible effect to babies, including microcephaly. No statistically significant correlation was found between novel data streams and global real-world epidemiological data. At country level, a correlation between the digital interest towards the Zika virus and Zika incidence rate or microcephaly cases has been detected.

CONCLUSIONS

An increasing public interest and reaction to the current Zika virus outbreak was documented by all web-data sources and a similar pattern of web reactions has been detected. The public opinion seems to be particularly worried by the alert of teratogenicity of the Zika virus. Stakeholders and health authorities could usefully exploited these internet tools for collecting the concerns of public opinion and reply to them, disseminating key information.

摘要

目的

寨卡病毒近期的传播构成了新出现的全球健康威胁。因此,它在全球引起了公众关注,引发了大量相关的互联网搜索和社交媒体互动。本研究的目的是采用行为信息学和分析方法,了解疫情传播期间与寨卡病毒相关的数字行为,并评估其与现实世界流行病学数据的一致性。

方法

在本研究中,从推文、谷歌趋势(GT)、谷歌新闻、YouTube和维基百科搜索查询等方面分析了全球对近期寨卡病毒爆发的网络关注度和反应。这些数据流的数据采集时间为2004年1月1日至2016年10月31日,重点关注2015年11月至2016年10月期间。该分析辅以流行病学数据。采用斯皮尔曼相关性分析来关联所有与寨卡病毒相关的数据。此外,以与寨卡病毒相关的搜索查询作为因变量,以流行病学数据、2015年的居民人数和人类发展指数作为预测变量进行多元回归分析。

结果

在研究期间,共分析了3864395条推文以及284903次对寨卡病毒相关维基百科页面的访问。所有网络数据来源均显示,研究和互动的主要高峰出现在2016年2月,8月出现第二个高峰。与所有新出现的数据流相关的活动在疫情期间相对于未检测到网络活动的疫情前时期显著增加。所有这些网络平台的数据之间的相关性都非常高且具有统计学意义。网络搜索特别集中的国家主要来自中美洲和南美洲。大多数查询涉及寨卡病毒的症状、传播媒介及其对婴儿可能产生的影响,包括小头畸形。在新出现的数据流与全球现实世界流行病学数据之间未发现统计学上的显著相关性。在国家层面,已检测到对寨卡病毒的数字关注度与寨卡病毒发病率或小头畸形病例之间存在相关性。

结论

所有网络数据来源均记录了公众对当前寨卡病毒爆发的关注度和反应不断增加,并检测到了类似的网络反应模式。公众舆论似乎特别担心寨卡病毒的致畸性警报。利益相关者和卫生当局可以有效地利用这些互联网工具来收集公众舆论的关切并予以回应,传播关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7a6/5608413/e322272705e7/pone.0185263.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验