Suppr超能文献

结合传统疾病监测与搜索、社交媒体及新闻报道数据预测2016年拉丁美洲寨卡疫情的发病率

Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data.

作者信息

McGough Sarah F, Brownstein John S, Hawkins Jared B, Santillana Mauricio

机构信息

Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.

Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, United States of America.

出版信息

PLoS Negl Trop Dis. 2017 Jan 13;11(1):e0005295. doi: 10.1371/journal.pntd.0005295. eCollection 2017 Jan.

Abstract

BACKGROUND

Over 400,000 people across the Americas are thought to have been infected with Zika virus as a consequence of the 2015-2016 Latin American outbreak. Official government-led case count data in Latin America are typically delayed by several weeks, making it difficult to track the disease in a timely manner. Thus, timely disease tracking systems are needed to design and assess interventions to mitigate disease transmission.

METHODOLOGY/PRINCIPAL FINDINGS: We combined information from Zika-related Google searches, Twitter microblogs, and the HealthMap digital surveillance system with historical Zika suspected case counts to track and predict estimates of suspected weekly Zika cases during the 2015-2016 Latin American outbreak, up to three weeks ahead of the publication of official case data. We evaluated the predictive power of these data and used a dynamic multivariable approach to retrospectively produce predictions of weekly suspected cases for five countries: Colombia, El Salvador, Honduras, Venezuela, and Martinique. Models that combined Google (and Twitter data where available) with autoregressive information showed the best out-of-sample predictive accuracy for 1-week ahead predictions, whereas models that used only Google and Twitter typically performed best for 2- and 3-week ahead predictions.

SIGNIFICANCE

Given the significant delay in the release of official government-reported Zika case counts, we show that these Internet-based data streams can be used as timely and complementary ways to assess the dynamics of the outbreak.

摘要

背景

据认为,在2015 - 2016年拉丁美洲疫情爆发期间,美洲各地超过40万人感染了寨卡病毒。拉丁美洲政府主导的官方病例计数数据通常会延迟数周,这使得及时追踪该疾病变得困难。因此,需要及时的疾病追踪系统来设计和评估减轻疾病传播的干预措施。

方法/主要发现:我们将与寨卡相关的谷歌搜索信息、推特微博以及HealthMap数字监测系统的信息与历史寨卡疑似病例计数相结合,以追踪和预测2015 - 2016年拉丁美洲疫情爆发期间每周的寨卡疑似病例估计数,比官方病例数据发布提前多达三周。我们评估了这些数据的预测能力,并采用动态多变量方法回顾性地对五个国家(哥伦比亚、萨尔瓦多、洪都拉斯、委内瑞拉和马提尼克)的每周疑似病例进行预测。将谷歌(以及可用时的推特数据)与自回归信息相结合的模型在提前1周预测时显示出最佳的样本外预测准确性,而仅使用谷歌和推特的模型通常在提前2周和3周预测时表现最佳。

意义

鉴于政府报告的寨卡病例计数发布存在显著延迟,我们表明这些基于互联网的数据流可作为及时且互补的方式来评估疫情动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ca/5268704/36ab584ace98/pntd.0005295.g001.jpg

相似文献

1
Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data.
PLoS Negl Trop Dis. 2017 Jan 13;11(1):e0005295. doi: 10.1371/journal.pntd.0005295. eCollection 2017 Jan.
2
Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemic.
BMC Public Health. 2019 Jun 14;19(1):761. doi: 10.1186/s12889-019-7103-8.
3
Dynamic Forecasting of Zika Epidemics Using Google Trends.
PLoS One. 2017 Jan 6;12(1):e0165085. doi: 10.1371/journal.pone.0165085. eCollection 2017.
4
Improved Real-Time Influenza Surveillance: Using Internet Search Data in Eight Latin American Countries.
JMIR Public Health Surveill. 2019 Apr 4;5(2):e12214. doi: 10.2196/12214.
5
Global reaction to the recent outbreaks of Zika virus: Insights from a Big Data analysis.
PLoS One. 2017 Sep 21;12(9):e0185263. doi: 10.1371/journal.pone.0185263. eCollection 2017.
6
Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis.
BMC Med. 2018 Oct 3;16(1):180. doi: 10.1186/s12916-018-1158-8.
7
Climate drives spatial variation in Zika epidemics in Latin America.
Proc Biol Sci. 2019 Aug 28;286(1909):20191578. doi: 10.1098/rspb.2019.1578.
8
Zika discourse in the Americas: A multilingual topic analysis of Twitter.
PLoS One. 2019 May 23;14(5):e0216922. doi: 10.1371/journal.pone.0216922. eCollection 2019.
10
How people react to Zika virus outbreaks on Twitter? A computational content analysis.
Am J Infect Control. 2016 Dec 1;44(12):1700-1702. doi: 10.1016/j.ajic.2016.04.253. Epub 2016 Aug 24.

引用本文的文献

1
Early Warning of Infectious Disease Outbreaks Using Social Media and Digital Data: A Scoping Review.
Int J Environ Res Public Health. 2025 Jul 13;22(7):1104. doi: 10.3390/ijerph22071104.
2
Vaccines, equity and sovereignty: Science for the world from Colombia.
Biomedica. 2025 May 30;45(2):169-172. doi: 10.7705/biomedica.8030.
3
Epidemiological methods in transition: Minimizing biases in classical and digital approaches.
PLOS Digit Health. 2025 Jan 13;4(1):e0000670. doi: 10.1371/journal.pdig.0000670. eCollection 2025 Jan.
4
Use of Digital Tools in Arbovirus Surveillance: Scoping Review.
J Med Internet Res. 2024 Nov 18;26:e57476. doi: 10.2196/57476.
5
Infectious disease surveillance needs for the United States: lessons from Covid-19.
Front Public Health. 2024 Jul 15;12:1408193. doi: 10.3389/fpubh.2024.1408193. eCollection 2024.
6
Estimating the household secondary attack rate and serial interval of COVID-19 using social media.
NPJ Digit Med. 2024 Jul 20;7(1):194. doi: 10.1038/s41746-024-01160-2.
7
The prediction of influenza-like illness using national influenza surveillance data and Baidu query data.
BMC Public Health. 2024 Feb 19;24(1):513. doi: 10.1186/s12889-024-17978-0.
9
Development of an early alert model for pandemic situations in Germany.
Sci Rep. 2023 Nov 27;13(1):20780. doi: 10.1038/s41598-023-48096-3.
10
The lead time and geographical variations of Baidu Search Index in the early warning of COVID-19.
Sci Rep. 2023 Sep 7;13(1):14705. doi: 10.1038/s41598-023-41939-z.

本文引用的文献

2
Available Evidence of Association between Zika Virus and Microcephaly.
Chin Med J (Engl). 2016 Oct 5;129(19):2347-56. doi: 10.4103/0366-6999.190672.
5
Time Lags between Exanthematous Illness Attributed to Zika Virus, Guillain-Barré Syndrome, and Microcephaly, Salvador, Brazil.
Emerg Infect Dis. 2016 Aug;22(8):1438-44. doi: 10.3201/eid2208.160496. Epub 2016 Aug 15.
6
Projecting Month of Birth for At-Risk Infants after Zika Virus Disease Outbreaks.
Emerg Infect Dis. 2016 May;22(5):828-32. doi: 10.3201/eid2205.160290.
7
US agency says Zika virus causes microcephaly.
BMJ. 2016 Apr 15;353:i2167. doi: 10.1136/bmj.i2167.
8
Microcephaly and Zika virus.
J Pediatr (Rio J). 2016 Mar-Apr;92(2):103-5. doi: 10.1016/j.jped.2016.02.003.
9
Zika virus in the Americas: Early epidemiological and genetic findings.
Science. 2016 Apr 15;352(6283):345-349. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验