Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK.
Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Trends Cell Biol. 2017 Nov;27(11):787-799. doi: 10.1016/j.tcb.2017.08.009. Epub 2017 Sep 19.
Insight into the regulation of complex physiological systems emerges from understanding how biological units communicate with each other. Recent findings show that mitochondria communicate at a distance with each other via nanotunnels, thin double-membrane protrusions that connect the matrices of non-adjacent mitochondria. Emerging evidence suggest that mitochondrial nanotunnels are generated by immobilized mitochondria and transport proteins. This review integrates data from the evolutionarily conserved structure and function of intercellular projections in bacteria with recent developments in mitochondrial imaging that permit nanotunnel visualization in eukaryotes. Cell type-specificity, timescales, and the selective size-based diffusion of biomolecules along nanotunnels are also discussed. The joining of individual mitochondria into dynamic networks of communicating organelles via nanotunnels and other mechanisms has major implications for organelle and cellular behaviors.
对复杂生理系统的调控机制的深入了解源于对生物单元之间相互通讯方式的认识。最近的研究发现,线粒体通过纳米管在远距离上进行通讯,纳米管是一种薄的双层膜突起,连接非相邻线粒体的基质。新兴证据表明,线粒体纳米管是由固定的线粒体和运输蛋白生成的。本综述整合了从细菌中细胞间突起的进化保守结构和功能到最近在真核生物中实现纳米管可视化的发展的相关数据。还讨论了细胞类型特异性、时程以及生物分子沿纳米管的基于选择大小的扩散。通过纳米管和其他机制将单个线粒体连接成动态的细胞器通讯网络,这对细胞器和细胞行为具有重要意义。