Suppr超能文献

读写单原子磁体。

Reading and writing single-atom magnets.

机构信息

IBM Almaden Research Center, San Jose, California 95120, USA.

Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Nature. 2017 Mar 8;543(7644):226-228. doi: 10.1038/nature21371.

Abstract

The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.

摘要

单原子比特代表了高密度磁存储介质经典方法的极限。到目前为止,最小的可单独寻址的双稳磁性比特由 3-12 个原子组成。在分子磁体中的单个镧系原子、在大块晶体中稀释的镧系元素,以及最近在氧化镁 (MgO) 上支撑的钬 (Ho) 原子集合中,已经证明了长磁弛豫时间。这些实验为在原子极限下进行数据存储提供了一条途径,但单个磁中心的访问方式仍不清楚。在这里,我们演示了在 MgO 上单个 Ho 原子的磁读出和写入,并表明它们独立地在数小时内保留其磁信息。我们使用隧道磁阻读取 Ho 状态,并使用扫描隧道显微镜用电流脉冲写入状态。通过附近铁传感器原子上的单原子电子自旋共振,证实了长寿命状态的磁起源,这也表明 Ho 在该表面上具有 10.1±0.1 玻尔磁子的大面外矩。为了演示独立的读写,我们构建了一个具有两个 Ho 位的原子级结构,我们在其中写入四个可能的状态,并通过电子自旋共振进行磁电阻和远程读出。高磁场稳定性与电读写相结合表明,单原子磁存储器确实是可能的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验