Suppr超能文献

通过将灰质和白质形态测量与双曲瓦瑟斯坦距离相结合来增强扩散磁共振成像测量

Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance.

作者信息

Zhang Wen, Shi Jie, Yu Jun, Zhan Liang, Thompson Paul M, Wang Yalin

机构信息

School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ.

Computer Engineering Program, University of Wisconsin-Stout, Menomonie, WI.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2017;2017:520-524. doi: 10.1109/ISBI.2017.7950574. Epub 2017 Jun 19.

Abstract

In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research.

摘要

为了改善阿尔茨海默病(AD)的临床前诊断,人们对利用磁共振成像(MRI)分析来研究与AD相关的脑结构变化有着浓厚的兴趣。作为主要特征,结构连通性的变化和皮质表面形态测量提供了不同的结构变化视角,以确定症状前患者是否患有AD。然而,扩散MRI(dMRI)中大规模的张量值信息和相对较低的成像分辨率给分析带来了巨大挑战。在本文中,我们提出了一种新颖的框架,通过融合来自结构MRI(sMRI)的皮质表面形态测量特征来提高dMRI分析能力。我们首先在地标约束下计算皮质表面之间的双曲调和映射,从而精确评估基于表面张量的形态测量。同时,对源自dMRI的结构连通性进行基于图的分析。接下来,我们通过最优质量传输(OMT)融合这两个特征,最终计算基于瓦瑟斯坦距离(WD)的单图像指数作为潜在的临床多模态成像评分。我们将我们的框架应用于从阿尔茨海默病神经影像倡议(AD-NI2)数据集中随机选取的20例AD患者和20例匹配的健康对照的脑图像。我们的组分类初步实验结果优于其他一些基于单一dMRI的特征,如区域海马体积、分数各向异性(FA)平均得分和平均轴向扩散率(MD)。这种新颖的图像融合流程和简单的结构变化成像评分可能有益于临床前AD和AD预防研究。

相似文献

2
Shape Analysis with Hyperbolic Wasserstein Distance.基于双曲瓦瑟斯坦距离的形状分析
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun;2016:5051-5061. doi: 10.1109/CVPR.2016.546. Epub 2016 Dec 12.
9
Hyperbolic Wasserstein Distance for Shape Indexing.双曲 Wasserstein 距离的形状索引。
IEEE Trans Pattern Anal Mach Intell. 2020 Jun;42(6):1362-1376. doi: 10.1109/TPAMI.2019.2898400. Epub 2019 Feb 8.

本文引用的文献

1
Shape Analysis with Hyperbolic Wasserstein Distance.基于双曲瓦瑟斯坦距离的形状分析
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun;2016:5051-5061. doi: 10.1109/CVPR.2016.546. Epub 2016 Dec 12.
3
Optimal mass transport for shape matching and comparison.用于形状匹配与比较的最优质量传输
IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2246-59. doi: 10.1109/TPAMI.2015.2408346.
4
Shape Matching Using Multiscale Integral Invariants.基于多尺度积分不变量的形状匹配。
IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):151-60. doi: 10.1109/TPAMI.2014.2342215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验