Suppr超能文献

控制仿生植入物界面:通过间隔物设计调节抗菌活性。

Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design.

作者信息

Wisdom Cate, VanOosten Sarah Kay, Boone Kyle W, Khvostenko Dmytro, Arnold Paul M, Snead Malcolm L, Tamerler Candan

机构信息

Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W 15th Street Lawrence, Kansas 66045, USA.

Bioengineering Research Center (BERC), University of Kansas, 3138 Learned Hall, 1530 W 15th Street Lawrence, Kansas 66045, USA,

出版信息

J Mol Eng Mater. 2016 Mar;4(1). doi: 10.1142/S2251237316400050. Epub 2016 Aug 22.

Abstract

Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against and , two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against . Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for and a 48-fold reduction for predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

摘要

手术部位感染是术后发病的常见原因,常常导致植入物松动,最终需要进行翻修手术,增加成本并导致更差的手术结果。由于植入物失效始于植入物表面,因此创建和控制生物材料界面在减少感染的同时改善宿主细胞与植入物的相互作用方面将发挥关键作用。在此,我们基于一种嵌合肽设计了一种仿生界面,该嵌合肽将钛结合肽(TiBP)与抗菌肽(AMP)整合到单个分子中,以直接结合到植入物表面,并对与临床植入物感染相关的两种细菌——[此处原文缺失细菌名称]和[此处原文缺失细菌名称]产生抗菌活性。为了优化抗菌活性,我们研究了分隔嵌合肽两个功能域的间隔域的设计。延长间隔域并改变其氨基酸组成,使对[此处原文缺失细菌名称]的最低抑菌浓度提高了三倍。涂有嵌合肽的表面显著减少了细菌数量,对[此处原文缺失细菌名称]最多减少了九倍,对[此处原文缺失细菌名称]最多减少了48倍,基于结构特征的抗菌活性预测得到了证实。与未处理的植入物表面相比,仿生界面处的宿主细胞附着和活力也得到了改善。用这种嵌合肽形成的仿生界面通过将抗菌作用与改善的宿主细胞对可植入钛材料的反应相结合,提供了无限的潜力,并且这种基于肽的方法可以扩展到各种生物材料表面。

相似文献

1
Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design.
J Mol Eng Mater. 2016 Mar;4(1). doi: 10.1142/S2251237316400050. Epub 2016 Aug 22.
2
Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5070-81. doi: 10.1021/acsami.5b03697. Epub 2016 Feb 22.
4
Self-assembling antimicrobial peptides on nanotubular titanium surfaces coated with calcium phosphate for local therapy.
Mater Sci Eng C Mater Biol Appl. 2019 Jan 1;94:333-343. doi: 10.1016/j.msec.2018.09.030. Epub 2018 Sep 12.
6
Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties.
ACS Biomater Sci Eng. 2020 May 11;6(5):2682-2695. doi: 10.1021/acsbiomaterials.9b01213. Epub 2019 Sep 24.
7
Repeatedly Applied Peptide Film Kills Bacteria on Dental Implants.
JOM (1989). 2019 Apr;71(4):1271-1280. doi: 10.1007/s11837-019-03334-w. Epub 2019 Jan 18.
9
Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants.
Mater Sci Eng C Mater Biol Appl. 2018 Jan 1;82:141-154. doi: 10.1016/j.msec.2017.08.062. Epub 2017 Aug 18.
10
Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.
ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28591-605. doi: 10.1021/acsami.5b10074. Epub 2015 Dec 21.

引用本文的文献

1
4
Application of Antimicrobial Peptides on Biomedical Implants: Three Ways to Pursue Peptide Coatings.
Int J Mol Sci. 2021 Dec 8;22(24):13212. doi: 10.3390/ijms222413212.
6
Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
BMC Bioinformatics. 2021 May 11;22(1):239. doi: 10.1186/s12859-021-04156-x.
7
Antimicrobial Peptide-Polymer Conjugates for Dentistry.
ACS Appl Polym Mater. 2020 Mar 13;2(3):1134-1144. doi: 10.1021/acsapm.9b00921. Epub 2020 Jan 2.
8
Peptide Mediated Antimicrobial Dental Adhesive System.
Appl Sci (Basel). 2019 Feb;9(3). doi: 10.3390/app9030557. Epub 2019 Feb 8.
9
Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations.
J Mech Behav Biomed Mater. 2021 Jan;113:104135. doi: 10.1016/j.jmbbm.2020.104135. Epub 2020 Oct 10.
10
Surface Immobilization Chemistry of a Laminin-Derived Peptide Affects Keratinocyte Activity.
Coatings (Basel). 2020 Jun;10(6). doi: 10.3390/coatings10060560. Epub 2020 Jun 11.

本文引用的文献

1
Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5070-81. doi: 10.1021/acsami.5b03697. Epub 2016 Feb 22.
2
Toward a Molecular Understanding of the Antibacterial Mechanism of Copper-Bearing Titanium Alloys against Staphylococcus aureus.
Adv Healthc Mater. 2016 Mar 9;5(5):557-66. doi: 10.1002/adhm.201500712. Epub 2015 Dec 22.
3
Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time.
Trends Microbiol. 2016 Feb;24(2):111-122. doi: 10.1016/j.tim.2015.11.004. Epub 2015 Dec 13.
5
Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.
J Biomed Mater Res A. 2015 Dec;103(12):3757-63. doi: 10.1002/jbm.a.35517. Epub 2015 Jun 19.
6
Bio-inspired hard-to-soft interface for implant integration to bone.
Nanomedicine. 2015 Feb;11(2):431-4. doi: 10.1016/j.nano.2014.10.003. Epub 2014 Nov 22.
8
Immune modulation by multifaceted cationic host defense (antimicrobial) peptides.
Nat Chem Biol. 2013 Dec;9(12):761-8. doi: 10.1038/nchembio.1393.
9
CAPITO--a web server-based analysis and plotting tool for circular dichroism data.
Bioinformatics. 2013 Jul 15;29(14):1750-7. doi: 10.1093/bioinformatics/btt278. Epub 2013 May 15.
10
Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers.
J Arthroplasty. 2013 Sep;28(8):1329-32. doi: 10.1016/j.arth.2013.01.012. Epub 2013 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验