Suppr超能文献

基于地标法利用纵向结构磁共振图像进行阿尔茨海默病诊断

Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.

作者信息

Zhang Jun, Liu Mingxia, An Le, Gao Yaozong, Shen Dinggang

机构信息

Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA.

Department of Computer Science, UNC at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). 2016 Oct;10081:35-45. doi: 10.1007/978-3-319-61188-4_4. Epub 2017 Jul 1.

Abstract

In this paper, we propose a landmark-based feature extraction method for AD diagnosis using longitudinal structural MR images, which requires no nonlinear registration or tissue segmentation in the application stage and is robust to the inconsistency among longitudinal scans. Specifically, (1) the discriminative landmarks are first automatically discovered from the whole brain, which can be efficiently localized using a fast landmark detection method for the testing images; (2) High-level statistical spatial features and contextual longitudinal features are then extracted based on those detected landmarks. Using the spatial and longitudinal features, a linear support vector machine (SVM) is adopted for distinguishing AD subjects from healthy controls (HCs) and also mild cognitive impairment (MCI) subjects from HCs, respectively. Experimental results demonstrate the competitive classification accuracies, as well as a promising computational efficiency.

摘要

在本文中,我们提出了一种基于地标点的特征提取方法,用于利用纵向结构磁共振图像进行阿尔茨海默病(AD)诊断。该方法在应用阶段无需进行非线性配准或组织分割,并且对纵向扫描之间的不一致具有鲁棒性。具体而言,(1)首先从全脑自动发现具有判别性的地标点,对于测试图像可使用快速地标点检测方法高效地对其进行定位;(2)然后基于那些检测到的地标点提取高级统计空间特征和上下文纵向特征。利用这些空间和纵向特征,分别采用线性支持向量机(SVM)将AD患者与健康对照(HC)区分开来,以及将轻度认知障碍(MCI)患者与HC区分开来。实验结果证明了其具有竞争力的分类准确率以及良好的计算效率。

相似文献

1
Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.基于地标法利用纵向结构磁共振图像进行阿尔茨海默病诊断
Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). 2016 Oct;10081:35-45. doi: 10.1007/978-3-319-61188-4_4. Epub 2017 Jul 1.
3
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis.检测用于快速诊断阿尔茨海默病的解剖学标志
IEEE Trans Med Imaging. 2016 Dec;35(12):2524-2533. doi: 10.1109/TMI.2016.2582386. Epub 2016 Jun 20.
5
Multimodal classification of Alzheimer's disease and mild cognitive impairment.阿尔茨海默病和轻度认知障碍的多模态分类。
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.
8
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.基于 RNN 的阿尔茨海默病纵向分析诊断。
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.

引用本文的文献

本文引用的文献

1
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis.检测用于快速诊断阿尔茨海默病的解剖学标志
IEEE Trans Med Imaging. 2016 Dec;35(12):2524-2533. doi: 10.1109/TMI.2016.2582386. Epub 2016 Jun 20.
3
Medical Image Retrieval Using Multi-graph Learning for MCI Diagnostic Assistance.使用多图学习辅助轻度认知障碍诊断的医学图像检索
Med Image Comput Comput Assist Interv. 2015 Oct;9350:86-93. doi: 10.1007/978-3-319-24571-3_11. Epub 2015 Nov 20.
4
MCI Identification by Joint Learning on Multiple MRI Data.基于多模态磁共振成像数据联合学习的轻度认知障碍识别
Med Image Comput Comput Assist Interv. 2015 Oct;9350:78-85. doi: 10.1007/978-3-319-24571-3_10. Epub 2015 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验