Suppr超能文献

利用纵向脑磁共振成像检测轻度认知障碍向阿尔茨海默病的转化

Detection of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Longitudinal Brain MRI.

作者信息

Sun Zhuo, van de Giessen Martijn, Lelieveldt Boudewijn P F, Staring Marius

机构信息

Division of Image Processing, Department of Radiology, Leiden University Medical Center Leiden, Netherlands.

Division of Image Processing, Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Department of Intelligent Systems, Delft University of TechnologyDelft, Netherlands.

出版信息

Front Neuroinform. 2017 Feb 24;11:16. doi: 10.3389/fninf.2017.00016. eCollection 2017.

Abstract

Mild Cognitive Impairment (MCI) is an intermediate stage between healthy and Alzheimer's disease (AD). To enable early intervention it is important to identify the MCI subjects that will convert to AD in an early stage. In this paper, we provide a new method to distinguish between MCI patients that either convert to Alzheimer's Disease (MCIc) or remain stable (MCIs), using only longitudinal T1-weighted MRI. Currently, most longitudinal studies focus on volumetric comparison of a few anatomical structures, thereby ignoring more detailed development inside and outside those structures. In this study we propose to exploit the anatomical development within the entire brain, as found by a non-rigid registration approach. Specifically, this anatomical development is represented by the Stationary Velocity Field (SVF) from registration between the baseline and follow-up images. To make the SVFs comparable among subjects, we use the parallel transport method to align them in a common space. The normalized SVF together with derived features are then used to distinguish between MCIc and MCIs subjects. This novel feature space is reduced using a Kernel Principal Component Analysis method, and a linear support vector machine is used as a classifier. Extensive comparative experiments are performed to inspect the influence of several aspects of our method on classification performance, specifically the feature choice, the smoothing parameter in the registration and the use of dimensionality reduction. The optimal result from a 10-fold cross-validation using 36 month follow-up data shows competitive results: accuracy 92%, sensitivity 95%, specificity 90%, and AUC 94%. Based on the same dataset, the proposed approach outperforms two alternative ones that either depends on the baseline image only, or uses longitudinal information from larger brain areas. Good results were also obtained when scans at 6, 12, or 24 months were used for training the classifier. Besides the classification power, the proposed method can quantitatively compare brain regions that have a significant difference in development between the MCIc and MCIs groups.

摘要

轻度认知障碍(MCI)是健康状态与阿尔茨海默病(AD)之间的中间阶段。为了实现早期干预,识别出早期将转变为AD的MCI受试者非常重要。在本文中,我们提供了一种新方法,仅使用纵向T1加权磁共振成像(MRI)来区分将转变为阿尔茨海默病的MCI患者(MCIc)和保持稳定的MCI患者(MCIs)。目前,大多数纵向研究集中于少数解剖结构的体积比较,从而忽略了这些结构内外更详细的变化。在本研究中,我们建议利用非刚性配准方法所发现的全脑解剖变化。具体而言,这种解剖变化由基线图像与随访图像配准得到的静止速度场(SVF)表示。为了使受试者之间的SVF具有可比性,我们使用平行传输方法将它们对齐到一个公共空间。然后,归一化的SVF及其派生特征用于区分MCIc和MCIs受试者。使用核主成分分析方法对这个新的特征空间进行降维,并使用线性支持向量机作为分类器。进行了广泛的对比实验,以考察我们方法的几个方面对分类性能的影响,特别是特征选择、配准中的平滑参数以及降维的使用。使用36个月随访数据进行10折交叉验证的最佳结果显示出有竞争力的结果:准确率92%,灵敏度95%,特异性90%,曲线下面积(AUC)94%。基于相同数据集,所提出的方法优于另外两种替代方法,一种仅依赖于基线图像,另一种使用来自更大脑区的纵向信息。当使用6个月、12个月或24个月的扫描数据训练分类器时,也获得了良好的结果。除了分类能力外,所提出的方法还可以定量比较MCIc组和MCIs组之间在发育上有显著差异的脑区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e812/5323395/0cd8f80a1474/fninf-11-00016-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验