Suppr超能文献

用于CMOS图像传感器退化图像的鲁棒去雾算法

Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

作者信息

Qu Chen, Bi Du-Yan, Sui Ping, Chao Ai-Nong, Wang Yun-Fei

机构信息

College of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China.

Foundation Department, Air Force Engineering University, Xi'an 710051, China.

出版信息

Sensors (Basel). 2017 Sep 22;17(10):2175. doi: 10.3390/s17102175.

Abstract

The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

摘要

互补金属氧化物半导体(CMOS)是一种新型的固态图像传感器设备,广泛应用于目标跟踪、目标识别、智能导航等领域。然而,户外CMOS传感器设备拍摄的图像通常会受到悬浮大气颗粒(如雾霾)的影响,导致图像对比度降低、颜色失真等问题。鉴于此,我们提出了一种基于局部一致马尔可夫随机场(MRF)框架的新型去雾方法。传统MRF中的相邻团块被扩展到非相邻团块,该非相邻团块基于两个线索在局部一致块上定义,其中大气光和透射率图都满足局部一致性特征。在此框架下,我们的模型在纳入更复杂的统计先验的同时,可以加强对整个图像的约束,从而具有更强的建模表达能力,有效解决细节恢复不足的问题并减轻颜色失真。此外,局部一致MRF框架在去雾时能够在保持较好结果的同时获取细节,有效提高了CMOS图像传感器拍摄的图像质量。实验结果验证了所提方法具有细节恢复和颜色保留的综合优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a0/5677412/d7b6c59ac453/sensors-17-02175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验