Jaber Ahmed, Reitz Michael, Singh Avinash, Maleki Ali, Xin Yongbao, Sullivan Brian T, Dolgaleva Ksenia, Boyd Robert W, Genes Claudiu, Ménard Jean-Michel
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Max Planck Centre for Extreme and Quantum Photonics, Ottawa, ON, K1N 6N5, Canada.
Nat Commun. 2024 May 24;15(1):4427. doi: 10.1038/s41467-024-48764-6.
Atoms and their different arrangements into molecules are nature's building blocks. In a regime of strong coupling, matter hybridizes with light to modify physical and chemical properties, hence creating new building blocks that can be used for avant-garde technologies. However, this regime relies on the strong confinement of the optical field, which is technically challenging to achieve, especially at terahertz frequencies in the far-infrared region. Here we demonstrate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized terahertz photonic mode to molecular vibrations. We observe an enhanced vacuum Rabi splitting of 200 GHz from a hybrid cavity architecture consisting of a plasmonic metasurface, coupled to glucose, and interfaced with a planar mirror. This enhanced light-matter interaction is found to emerge from the modified intracavity field of the cavity, leading to an enhanced zero-point electric field amplitude. Our study provides key insight into the design of polaritonic platforms with organic molecules to harvest the unique properties of hybrid light-matter states.
原子及其形成分子的不同排列方式是自然界的基石。在强耦合 regime 中,物质与光发生杂化以改变物理和化学性质,从而创造出可用于前沿技术的新基石。然而,这种 regime 依赖于光场的强限制,这在技术上具有挑战性,尤其是在远红外区域的太赫兹频率下。在这里,我们展示了几种旨在促进局域太赫兹光子模式与分子振动的集体耦合的电磁场限制方案。我们观察到由等离子体超表面、与葡萄糖耦合并与平面镜界面组成的混合腔结构产生了 200 GHz 的增强真空拉比分裂。发现这种增强的光 - 物质相互作用源于腔的修改后的腔内场,导致零点电场振幅增强。我们的研究为设计具有有机分子的极化子平台以获取混合光 - 物质态的独特性质提供了关键见解。