Suppr超能文献

2017 年人类血浆蛋白质组草案:基于质谱和互补检测的人类血浆肽图集。

The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.

机构信息

Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology , Tomtebodavägen 23, SE-171 65 Solna, Sweden.

Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan , Ann Arbor, Michigan 48109-2218, United States.

出版信息

J Proteome Res. 2017 Dec 1;16(12):4299-4310. doi: 10.1021/acs.jproteome.7b00467. Epub 2017 Oct 10.

Abstract

Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.

摘要

人血浆提供了一个高度可及的窗口,可以了解健康和疾病个体的蛋白质组。自 2002 年成立以来,人类蛋白质组组织的人类血浆蛋白质组计划(HPPP)一直在推动人类血浆蛋白质组的研究和理解的进展,以及确定其成分的丰度和修饰。在 2017 年,我们回顾了 HPPP 的历史和人类血浆蛋白质组学的一般进展,包括最近的一些成就。然后,我们展示了最新的 2017-04 版人类血浆肽图谱,该图谱从全球所有实验中 178 个独立实验的 1%蛋白质水平 FDR 获得了约 4300 万肽谱匹配和 122730 个独特肽序列。应用最新的人类蛋白质组计划数据解释指南,我们将至少有两个非嵌套的、独特映射的 9 个氨基酸或更长和 >1300 个具有模糊证据的额外蛋白质的 3509 个蛋白质编入目录。我们将相同的双肽准则应用于回溯到 2006 年的历史肽图谱构建,并检查过去十年在血浆蛋白质组覆盖方面取得的进展。我们还比较了在不同 RNA 丰度和细胞定位类别中历史肽图谱构建中的蛋白质分布。然后,我们根据靶向质谱和亲和测定法讨论了血浆蛋白质组学的进展,这两种方法在 2017 年初靶向约 2000 个蛋白质。最后,我们描述了关于样本处理和研究设计的考虑因素,最后展望了未来在破译人类血浆蛋白质组方面的进展。

相似文献

1
The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.
J Proteome Res. 2017 Dec 1;16(12):4299-4310. doi: 10.1021/acs.jproteome.7b00467. Epub 2017 Oct 10.
2
Advances and Utility of the Human Plasma Proteome.
J Proteome Res. 2021 Dec 3;20(12):5241-5263. doi: 10.1021/acs.jproteome.1c00657. Epub 2021 Oct 21.
4
A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas.
Mol Cell Proteomics. 2011 Sep;10(9):M110.006353. doi: 10.1074/mcp.M110.006353. Epub 2011 Jun 1.
5
State of the Human Proteome in 2014/2015 As Viewed through PeptideAtlas: Enhancing Accuracy and Coverage through the AtlasProphet.
J Proteome Res. 2015 Sep 4;14(9):3461-73. doi: 10.1021/acs.jproteome.5b00500. Epub 2015 Jul 24.
6
Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.
J Proteome Res. 2017 Dec 1;16(12):4281-4287. doi: 10.1021/acs.jproteome.7b00375. Epub 2017 Oct 9.
7
8
Human Plasma PeptideAtlas.
Proteomics. 2005 Aug;5(13):3497-500. doi: 10.1002/pmic.200500160.
9
Data management and data integration in the HUPO plasma proteome project.
Methods Mol Biol. 2011;696:247-57. doi: 10.1007/978-1-60761-987-1_15.
10
The state of the human proteome in 2012 as viewed through PeptideAtlas.
J Proteome Res. 2013 Jan 4;12(1):162-71. doi: 10.1021/pr301012j. Epub 2012 Dec 5.

引用本文的文献

1
The plasma proteome and breast cancer risk.
Breast Cancer Res. 2025 Sep 1;27(1):157. doi: 10.1186/s13058-025-02110-w.
2
BloodProST: prediction of blood-secretory proteins through self-training.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf385.
3
Altered metabolomics and inflammatory transcriptomics in human bone marrow adipocytes after acute high calorie diet and acute fasting.
Front Endocrinol (Lausanne). 2025 Jun 16;16:1591280. doi: 10.3389/fendo.2025.1591280. eCollection 2025.
4
Discovery of peptides as key regulators of metabolic and cardiovascular crosstalk.
Cell Rep. 2025 Jun 24;44(6):115836. doi: 10.1016/j.celrep.2025.115836. Epub 2025 Jun 16.
5
Mechanistic Insights into Tumorigenesis from Serum Proteins.
medRxiv. 2025 Jun 5:2025.06.04.25328977. doi: 10.1101/2025.06.04.25328977.
7
Deciphering Acute Coronary Syndromes Pathobiology Through Proteomics.
J Cardiovasc Dev Dis. 2025 May 15;12(5):188. doi: 10.3390/jcdd12050188.
8
SysQuan: Repurposing SILAC Mice for the Cost-Effective Absolute Quantitation of the Human Proteome.
Mol Cell Proteomics. 2025 Apr 18;24(6):100974. doi: 10.1016/j.mcpro.2025.100974.
9
Integrated liver-secreted and plasma proteomics identify a predictive model that stratifies MASH.
Cell Rep Med. 2025 May 20;6(5):102085. doi: 10.1016/j.xcrm.2025.102085. Epub 2025 Apr 17.
10
Understanding peptide hormones: from precursor proteins to bioactive molecules.
Trends Biochem Sci. 2025 Jun;50(6):481-494. doi: 10.1016/j.tibs.2025.03.014. Epub 2025 Apr 14.

本文引用的文献

1
Can we predict protein from mRNA levels?
Nature. 2017 Jul 26;547(7664):E19-E20. doi: 10.1038/nature22293.
2
Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS.
Nat Biotechnol. 2017 Aug;35(8):781-788. doi: 10.1038/nbt.3908. Epub 2017 Jun 12.
3
Stability of Proteins in Dried Blood Spot Biobanks.
Mol Cell Proteomics. 2017 Jul;16(7):1286-1296. doi: 10.1074/mcp.RA117.000015. Epub 2017 May 13.
4
Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
Circulation. 2017 Apr 25;135(17):1651-1664. doi: 10.1161/CIRCULATIONAHA.116.025446.
5
Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease.
PLoS Genet. 2017 Apr 3;13(4):e1006706. doi: 10.1371/journal.pgen.1006706. eCollection 2017 Apr.
6
Selection of DNA aptamers with two modified bases.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2898-2903. doi: 10.1073/pnas.1615475114. Epub 2017 Mar 6.
7
Connecting genetic risk to disease end points through the human blood plasma proteome.
Nat Commun. 2017 Feb 27;8:14357. doi: 10.1038/ncomms14357.
8
Proteomics reveals the effects of sustained weight loss on the human plasma proteome.
Mol Syst Biol. 2016 Dec 22;12(12):901. doi: 10.15252/msb.20167357.
9
Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis.
J Proteome Res. 2017 Feb 3;16(2):665-676. doi: 10.1021/acs.jproteome.6b00727. Epub 2017 Jan 3.
10
A proposal for validation of antibodies.
Nat Methods. 2016 Oct;13(10):823-7. doi: 10.1038/nmeth.3995. Epub 2016 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验