Rosenberger George, Liu Yansheng, Röst Hannes L, Ludwig Christina, Buil Alfonso, Bensimon Ariel, Soste Martin, Spector Tim D, Dermitzakis Emmanouil T, Collins Ben C, Malmström Lars, Aebersold Ruedi
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland.
Nat Biotechnol. 2017 Aug;35(8):781-788. doi: 10.1038/nbt.3908. Epub 2017 Jun 12.
Consistent detection and quantification of protein post-translational modifications (PTMs) across sample cohorts is a prerequisite for functional analysis of biological processes. Data-independent acquisition (DIA) is a bottom-up mass spectrometry approach that provides complete information on precursor and fragment ions. However, owing to the convoluted structure of DIA data sets, confident, systematic identification and quantification of peptidoforms has remained challenging. Here, we present inference of peptidoforms (IPF), a fully automated algorithm that uses spectral libraries to query, validate and quantify peptidoforms in DIA data sets. The method was developed on data acquired by the DIA method SWATH-MS and benchmarked using a synthetic phosphopeptide reference data set and phosphopeptide-enriched samples. IPF reduced false site-localization by more than sevenfold compared with previous approaches, while recovering 85.4% of the true signals. Using IPF, we quantified peptidoforms in DIA data acquired from >200 samples of blood plasma of a human twin cohort and assessed the contribution of heritable, environmental and longitudinal effects on their PTMs.
跨样本队列对蛋白质翻译后修饰(PTMs)进行一致的检测和定量是生物过程功能分析的前提条件。数据非依赖采集(DIA)是一种自下而上的质谱方法,可提供有关前体离子和碎片离子的完整信息。然而,由于DIA数据集结构复杂,对肽段异构体进行可靠、系统的鉴定和定量仍然具有挑战性。在此,我们介绍了肽段异构体推断(IPF),这是一种全自动算法,利用光谱库对DIA数据集中的肽段异构体进行查询、验证和定量。该方法基于DIA方法SWATH-MS采集的数据开发,并使用合成磷酸肽参考数据集和富含磷酸肽的样本进行基准测试。与先前的方法相比,IPF将错误的位点定位减少了七倍多,同时恢复了85.4%的真实信号。使用IPF,我们对从>200个人类双胞胎队列的血浆样本中获取的DIA数据中的肽段异构体进行了定量,并评估了遗传、环境和纵向效应对其PTMs的贡献。