Suppr超能文献

罕见癌症的靶标发现新机遇。

Emerging Opportunities for Target Discovery in Rare Cancers.

机构信息

Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

出版信息

Cell Chem Biol. 2017 Sep 21;24(9):1075-1091. doi: 10.1016/j.chembiol.2017.08.002.

Abstract

Rare cancers pose unique challenges to research due to their low incidence. Barriers include a scarcity of tissue and experimental models to enable basic research and insufficient patient accrual for clinical studies. Consequently, an understanding of the genetic and cellular features of many rare cancer types and their associated vulnerabilities has been lacking. However, new opportunities are emerging to facilitate discovery of therapeutic targets in rare cancers. Online platforms are allowing patients with rare cancers to organize on an unprecedented scale, tumor genome sequencing is now routinely performed in research and clinical settings, and the efficiency of patient-derived model generation has improved. New CRISPR/Cas9 and small-molecule libraries permit cancer dependency discovery in a rapid and systematic fashion. In parallel, large-scale studies of common cancers now provide reference datasets to help interpret rare cancer profiling data. Together, these advances motivate consideration of new research frameworks to accelerate rare cancer target discovery.

摘要

罕见癌症由于发病率低,给研究带来了独特的挑战。障碍包括缺乏组织和实验模型来进行基础研究,以及临床研究中患者入组不足。因此,许多罕见癌症类型的遗传和细胞特征及其相关弱点的理解一直很欠缺。然而,新的机会正在出现,以促进在罕见癌症中发现治疗靶点。在线平台使罕见癌症患者能够以前所未有的规模组织起来,肿瘤基因组测序现在在研究和临床环境中常规进行,并且患者衍生模型生成的效率得到了提高。新的 CRISPR/Cas9 和小分子文库允许快速系统地发现癌症依赖性。与此同时,对常见癌症的大规模研究现在提供了参考数据集,以帮助解释罕见癌症分析数据。这些进展共同促使人们考虑新的研究框架,以加速罕见癌症靶点的发现。

相似文献

1
Emerging Opportunities for Target Discovery in Rare Cancers.罕见癌症的靶标发现新机遇。
Cell Chem Biol. 2017 Sep 21;24(9):1075-1091. doi: 10.1016/j.chembiol.2017.08.002.
8
A first-generation pediatric cancer dependency map.第一代儿科癌症依赖图谱。
Nat Genet. 2021 Apr;53(4):529-538. doi: 10.1038/s41588-021-00819-w. Epub 2021 Mar 22.

引用本文的文献

3
The present and future of the Cancer Dependency Map.癌症依赖性图谱的现状与未来。
Nat Rev Cancer. 2025 Jan;25(1):59-73. doi: 10.1038/s41568-024-00763-x. Epub 2024 Oct 28.

本文引用的文献

3
Implementing Genome-Driven Oncology.实施基因组驱动的肿瘤学。
Cell. 2017 Feb 9;168(4):584-599. doi: 10.1016/j.cell.2016.12.015.
4
Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.嗜铬细胞瘤和副神经节瘤的综合分子特征
Cancer Cell. 2017 Feb 13;31(2):181-193. doi: 10.1016/j.ccell.2017.01.001. Epub 2017 Feb 2.
8
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
10
Functional Genomic Characterization of Cancer Genomes.癌症基因组的功能基因组特征分析
Cold Spring Harb Symp Quant Biol. 2016;81:237-246. doi: 10.1101/sqb.2016.81.031070. Epub 2016 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验