文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

第一代儿科癌症依赖图谱。

A first-generation pediatric cancer dependency map.

机构信息

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.

出版信息

Nat Genet. 2021 Apr;53(4):529-538. doi: 10.1038/s41588-021-00819-w. Epub 2021 Mar 22.


DOI:10.1038/s41588-021-00819-w
PMID:33753930
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8049517/
Abstract

Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.

摘要

从高突变负荷的成人癌症的 CRISPR 为基础的筛选中,涌现出令人兴奋的治疗靶点。然而,一个关键问题是,功能基因组方法是否会在儿科癌症中产生新的靶点,儿科癌症的突变通常很少,这些突变往往编码被认为是具有挑战性的药物靶点的蛋白质。为了解决这个问题,我们创建了第一代儿科癌症依赖图谱,代表 13 种儿科实体瘤和脑肿瘤类型。对 82 种儿科癌细胞系进行了全基因组 CRISPR-Cas9 功能丧失筛选,以鉴定细胞存活所需的基因。与儿科癌症携带较少体细胞突变的发现相反,我们发现儿科癌细胞系的遗传依赖性与成人模型相似。儿科癌症依赖图谱的研究结果为正在进行的精准医学临床试验提供了临床前支持。在儿科癌症中观察到的脆弱性往往与成人癌症中的不同,这表明重新利用成人肿瘤药物不足以解决儿童癌症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/108030cbc677/nihms-1674737-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/4757fa0fac78/nihms-1674737-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/3af4f9585208/nihms-1674737-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/ac53f1cb46a4/nihms-1674737-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/41c181473df0/nihms-1674737-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/2717af3f5b78/nihms-1674737-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/6313563497a3/nihms-1674737-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/6f940eb34c7d/nihms-1674737-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/202656ae570a/nihms-1674737-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/7d48d5ce3517/nihms-1674737-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/53b1b4ab6d58/nihms-1674737-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/bd7a980bd2f7/nihms-1674737-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/2d8ee0392d8a/nihms-1674737-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/f393eca615a7/nihms-1674737-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/108030cbc677/nihms-1674737-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/4757fa0fac78/nihms-1674737-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/3af4f9585208/nihms-1674737-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/ac53f1cb46a4/nihms-1674737-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/41c181473df0/nihms-1674737-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/2717af3f5b78/nihms-1674737-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/6313563497a3/nihms-1674737-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/6f940eb34c7d/nihms-1674737-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/202656ae570a/nihms-1674737-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/7d48d5ce3517/nihms-1674737-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/53b1b4ab6d58/nihms-1674737-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/bd7a980bd2f7/nihms-1674737-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/2d8ee0392d8a/nihms-1674737-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/f393eca615a7/nihms-1674737-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/8049517/108030cbc677/nihms-1674737-f0004.jpg

相似文献

[1]
A first-generation pediatric cancer dependency map.

Nat Genet. 2021-4

[2]
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.

Cardiovasc Res. 2020-4-1

[3]
Dead Cas Systems: Types, Principles, and Applications.

Int J Mol Sci. 2019-11-30

[4]
Optical Control of Genome Editing by Photoactivatable Cas9.

Methods Mol Biol. 2021

[5]
CRISPR-Cas9 in genome editing: Its function and medical applications.

J Cell Physiol. 2018-10-26

[6]
Choosing CRISPR-based screens in cancer.

Nat Methods. 2017-3-31

[7]
Shooting the messenger: RNA-targetting CRISPR-Cas systems.

Biosci Rep. 2018-6-21

[8]
CRISPR-Cas systems: ushering in the new genome editing era.

Bioengineered. 2018

[9]
Integrated cross-study datasets of genetic dependencies in cancer.

Nat Commun. 2021-3-12

[10]
CRISPR: development of a technology and its applications.

FEBS J. 2021-1

引用本文的文献

[1]
MyoD is essential in rhabdomyosarcoma by promoting survival through differentiation and CYLD.

iScience. 2025-7-18

[2]
Histone Deacetylase Inhibitors Target DNA Replication Regulators and Replication Stress in Ewing Sarcoma Cells.

Cancer Res Commun. 2025-6-1

[3]
Conference Report: Cerebellar Development and Disease at Single-Cell Resolution.

Cerebellum. 2025-6-5

[4]
Identifying Targeted Therapies for CBFA2T3::GLIS2 Acute Myeloid Leukemia.

Res Sq. 2025-5-13

[5]
Generation of a biliary tract cancer cell line atlas identifies molecular subtypes and therapeutic targets.

Cancer Discov. 2025-5-12

[6]
The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells.

Elife. 2025-5-6

[7]
Role of epigenetics in paediatric cancer pathogenesis & drug resistance.

Br J Cancer. 2025-5

[8]
Myogenesis gone awry: the role of developmental pathways in rhabdomyosarcoma.

Front Cell Dev Biol. 2025-1-20

[9]
Synthetic lethal strategies for the development of cancer therapeutics.

Nat Rev Clin Oncol. 2025-1

[10]
Pooled CRISPR screens with joint single-nucleus chromatin accessibility and transcriptome profiling.

Nat Biotechnol. 2024-11-21

本文引用的文献

[1]
Global computational alignment of tumor and cell line transcriptional profiles.

Nat Commun. 2021-1-4

[2]
Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens.

Mol Syst Biol. 2020-7

[3]
Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma.

Nat Genet. 2019-11-29

[4]
Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods.

Genome Biol. 2019-10-21

[5]
Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors.

Cell Rep. 2019-8-27

[6]
Next-generation characterization of the Cancer Cell Line Encyclopedia.

Nature. 2019-5-8

[7]
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Nature. 2019-4-10

[8]
WRN helicase is a synthetic lethal target in microsatellite unstable cancers.

Nature. 2019-4-10

[9]
New insights into germ cell tumor genomics.

Andrology. 2019-3-21

[10]
Renal medullary carcinomas depend upon loss and are sensitive to proteasome inhibition.

Elife. 2019-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索