Suppr超能文献

临床环境中的下一代测序可明确患者特征及潜在可操作性。

Next-Generation Sequencing in the Clinical Setting Clarifies Patient Characteristics and Potential Actionability.

作者信息

Bieg-Bourne Cheyennedra C, Millis Sherri Z, Piccioni David E, Fanta Paul T, Goldberg Michael E, Chmielecki Juliann, Parker Barbara A, Kurzrock Razelle

机构信息

San Diego State University, San Diego, California.

Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California.

出版信息

Cancer Res. 2017 Nov 15;77(22):6313-6320. doi: 10.1158/0008-5472.CAN-17-1569. Epub 2017 Sep 22.

Abstract

Enhancements in clinical-grade next-generation sequencing (NGS) have fueled the advancement of precision medicine in the clinical oncology field. Here, we survey the molecular profiles of 1,113 patients with diverse malignancies who successfully underwent clinical-grade NGS (236-404 genes) in an academic tertiary cancer center. Among the individual tumors examined, the majority showed at least one detectable alteration (97.2%). Among 2,045 molecular aberrations was the involvement of 302 distinct genes. The most commonly altered genes were (47.0%), (18.0%), (17.0%), and (16.0%), and the majority of patients had tumors that harbored multiple alterations. Tumors displayed a median of four alterations (range, 0-29). Most individuals had at least one potentially actionable alteration (94.7%), with the median number of potentially actionable alterations per patient being 2 (range, 0-13). A total of 1,048 (94.2%) patients exhibited a unique molecular profile, with either genes altered or loci within the gene(s) altered being distinct. Approximately 13% of patients displayed a genomic profile identical to at least one other patient; although genes altered were the same, the affected loci may have differed. Overall, our results underscore the complex heterogeneity of malignancies and argue that customized combination therapies will be essential to optimize cancer treatment regimens. .

摘要

临床级下一代测序(NGS)技术的进步推动了临床肿瘤学领域精准医学的发展。在此,我们调查了在一家学术性三级癌症中心成功接受临床级NGS(检测236 - 404个基因)的1113例不同恶性肿瘤患者的分子特征。在所检测的个体肿瘤中,大多数至少显示出一种可检测到的改变(97.2%)。在2045个分子异常中涉及302个不同的基因。最常发生改变的基因是(47.0%)、(18.0%)、(17.0%)和(16.0%),并且大多数患者的肿瘤存在多种改变。肿瘤显示的改变中位数为4种(范围为0 - 29种)。大多数个体至少有一个潜在可靶向治疗的改变(94.7%),每位患者潜在可靶向治疗改变的中位数为2种(范围为0 - 13种)。共有1048例(94.2%)患者表现出独特的分子特征,即改变的基因或基因内改变的位点不同。约13%的患者显示出与至少一名其他患者相同的基因组特征;尽管改变的基因相同,但受影响的位点可能不同。总体而言,我们的结果强调了恶性肿瘤复杂的异质性,并表明定制的联合疗法对于优化癌症治疗方案至关重要。

相似文献

1
Next-Generation Sequencing in the Clinical Setting Clarifies Patient Characteristics and Potential Actionability.
Cancer Res. 2017 Nov 15;77(22):6313-6320. doi: 10.1158/0008-5472.CAN-17-1569. Epub 2017 Sep 22.
2
On the Road to Precision Cancer Medicine: Analysis of Genomic Biomarker Actionability in 439 Patients.
Mol Cancer Ther. 2015 Jun;14(6):1488-94. doi: 10.1158/1535-7163.MCT-14-1061. Epub 2015 Apr 7.
3
6
Genomic Alterations in Circulating Tumor DNA from Diverse Cancer Patients Identified by Next-Generation Sequencing.
Cancer Res. 2017 Oct 1;77(19):5419-5427. doi: 10.1158/0008-5472.CAN-17-0885. Epub 2017 Aug 14.
7
Physician interpretation of genomic test results and treatment selection.
Cancer. 2018 Mar 1;124(5):966-972. doi: 10.1002/cncr.31112. Epub 2017 Nov 22.
8
Molecular tests and target therapies in oncology: recommendations from the Italian workshop.
Future Oncol. 2021 Sep;17(26):3529-3539. doi: 10.2217/fon-2021-0286. Epub 2021 Jul 13.

引用本文的文献

2
Advancing precision oncology with AI-powered genomic analysis.
Front Pharmacol. 2025 Apr 30;16:1591696. doi: 10.3389/fphar.2025.1591696. eCollection 2025.
3
Clinicopathological and histological analysis of secondary malignant giant cell tumors of bone without radiotherapy.
Oncol Lett. 2022 Jul 19;24(3):319. doi: 10.3892/ol.2022.13439. eCollection 2022 Sep.
4
Multi-omic analysis in carcinoma of unknown primary (CUP): therapeutic impact of knowing the unknown.
Mol Oncol. 2024 Apr;18(4):956-968. doi: 10.1002/1878-0261.13293. Epub 2023 Nov 16.
5
Bioinformatics roadmap for therapy selection in cancer genomics.
Mol Oncol. 2022 Nov;16(21):3881-3908. doi: 10.1002/1878-0261.13286. Epub 2022 Aug 20.
6
Inter-assay variability of next-generation sequencing-based gene panels.
BMC Med Genomics. 2022 Apr 15;15(1):86. doi: 10.1186/s12920-022-01230-y.
7
Clinical utility of comprehensive genomic profiling in Japan: Result of PROFILE-F study.
PLoS One. 2022 Mar 31;17(3):e0266112. doi: 10.1371/journal.pone.0266112. eCollection 2022.

本文引用的文献

2
Identification of frequent somatic mutations in inflammatory breast cancer.
Breast Cancer Res Treat. 2017 Jun;163(2):263-272. doi: 10.1007/s10549-017-4165-0. Epub 2017 Feb 27.
4
Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors.
Pediatr Blood Cancer. 2017 Jun;64(6). doi: 10.1002/pbc.26365. Epub 2016 Nov 29.
5
Targeted therapies: What have we learned from SHIVA?
Nat Rev Clin Oncol. 2016 Dec;13(12):719-720. doi: 10.1038/nrclinonc.2016.164. Epub 2016 Oct 11.
6
Lung cancer: current therapies and new targeted treatments.
Lancet. 2017 Jan 21;389(10066):299-311. doi: 10.1016/S0140-6736(16)30958-8. Epub 2016 Aug 27.
7
Clinical Actionability of Comprehensive Genomic Profiling for Management of Rare or Refractory Cancers.
Oncologist. 2016 Nov;21(11):1315-1325. doi: 10.1634/theoncologist.2016-0049. Epub 2016 Aug 26.
8
Current and emerging therapies of HER2-positive metastatic breast cancer.
Breast. 2016 Oct;29:170-7. doi: 10.1016/j.breast.2016.07.026. Epub 2016 Aug 13.
9
Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo.
Mol Cancer Ther. 2016 Oct;15(10):2314-2322. doi: 10.1158/1535-7163.MCT-16-0298. Epub 2016 Aug 5.
10
TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
Mol Cancer Ther. 2016 Oct;15(10):2475-2485. doi: 10.1158/1535-7163.MCT-16-0196. Epub 2016 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验