School of Electronic and Information Engineering, Soochow University, Suzhou, 215000, China.
Med Phys. 2017 Dec;44(12):6353-6363. doi: 10.1002/mp.12594. Epub 2017 Nov 7.
This paper studies the feasibility of developing a fast and accurate automatic kidney component segmentation method. The proposed method segments the kidney into four components: renal cortex, renal column, renal medulla, and renal pelvis.
In this article, we have proposed a highly efficient approach which strategically combines random forests and random ferns methods to segment the kidney into four components: renal cortex, renal column, renal medulla, and renal pelvis. The proposed method is designed following a coarse-to-fine strategy. The initial segmentation applies random forests and random ferns with a variety of features, and combines their results to obtain a coarse renal cortex region. Then the fine segmentation of four kidney components is achieved using the weighted forests-ferns approach with the well-designed potential energy features which are calculated based on the initial segmentation result. The proposed method was validated on a dataset with 37 contrast-enhanced CT images. Evaluation indices including Dice similarity coefficient (DSC), true positive volume fraction (TPVF), and false positive volume fraction (FPVF) are used to assess the segmentation accuracy. The proposed method was implemented and tested on a 64-bit system computer (Intel Core i7-3770 CPU, 3.4 GHz and 8 GB RAM).
The experimental results demonstrated the high accuracy and efficiency for segmenting the kidney components: the mean Dice similarity coefficients were 89.85%, 80.60%, 86.63%, and 77.75% for renal cortex, column, medulla, and pelvis, respectively, for right and left kidneys. The computational time of segmenting the whole kidney into four components was about 3 s.
The experimental results showed the feasibility and efficacy of the proposed automatic kidney component segmentation method. The proposed method applied an efficient weighted strategy to combine random forests and ferns, making full use of the advantages of both methods. The novel potential energy features help random forests effectively segment the kidney components and the background. The high accuracy and efficiency of our method make it practicable in clinical applications.
本研究旨在探讨开发一种快速准确的自动肾脏成分分割方法的可行性。该方法将肾脏分割为四个成分:肾皮质、肾柱、肾髓质和肾盂。
本文提出了一种高效的方法,该方法策略性地结合了随机森林和随机蕨类方法,将肾脏分割为四个成分:肾皮质、肾柱、肾髓质和肾盂。所提出的方法采用了从粗到精的策略。初始分割应用随机森林和随机蕨类,结合各种特征,并结合它们的结果得到一个粗略的肾皮质区域。然后,使用加权森林-蕨类方法和精心设计的基于初始分割结果的潜在能量特征来实现四个肾脏成分的精细分割。该方法在包含 37 个增强 CT 图像的数据集上进行了验证。评估指标包括 Dice 相似系数(DSC)、真阳性体积分数(TPVF)和假阳性体积分数(FPVF),用于评估分割准确性。所提出的方法在 64 位系统计算机(Intel Core i7-3770 CPU,3.4 GHz 和 8GB RAM)上进行了实现和测试。
实验结果表明,该方法对分割肾脏成分具有很高的准确性和效率:左右肾脏的肾皮质、柱、髓质和肾盂的平均 Dice 相似系数分别为 89.85%、80.60%、86.63%和 77.75%。分割整个肾脏成四个成分的计算时间约为 3 秒。
实验结果表明,所提出的自动肾脏成分分割方法具有可行性和有效性。所提出的方法应用了有效的加权策略来结合随机森林和蕨类,充分利用了两种方法的优势。新颖的潜在能量特征有助于随机森林有效地分割肾脏成分和背景。该方法具有较高的准确性和效率,使其在临床应用中具有实用性。