Suppr超能文献

用于高度加速多回波螺旋功能磁共振成像的非笛卡尔自监督物理驱动深度学习重建

NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI.

作者信息

Gu Hongyi, Zhang Chi, Yu Zidan, Rettenmeier Christoph, Stenger V Andrew, Akçakaya Mehmet

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635551. Epub 2024 Aug 22.

Abstract

Functional MRI (fMRI) is an important tool for non-invasive studies of brain function. Over the past decade, multi-echo fMRI methods that sample multiple echo times has become popular with potential to improve quantification. While these acquisitions are typically performed with Cartesian trajectories, non-Cartesian trajectories, in particular spiral acquisitions, hold promise for denser sampling of echo times. However, such acquisitions require very high acceleration rates for sufficient spatiotemporal resolutions. In this work, we propose to use a physics-driven deep learning (PD-DL) reconstruction to accelerate multi-echo spiral fMRI by 10-fold. We modify a self-supervised learning algorithm for optimized training with non-Cartesian trajectories and use it to train the PD-DL network. Results show that the proposed self-supervised PD-DL reconstruction achieves high spatio-temporal resolution with meaningful BOLD analysis.

摘要

功能磁共振成像(fMRI)是用于脑功能无创研究的重要工具。在过去十年中,对多个回波时间进行采样的多回波fMRI方法已变得流行起来,具有改善量化的潜力。虽然这些采集通常采用笛卡尔轨迹进行,但非笛卡尔轨迹,特别是螺旋采集,有望对回波时间进行更密集的采样。然而,这种采集需要非常高的加速率才能获得足够的时空分辨率。在这项工作中,我们建议使用物理驱动的深度学习(PD-DL)重建将多回波螺旋fMRI加速10倍。我们修改了一种自监督学习算法,以便用非笛卡尔轨迹进行优化训练,并使用它来训练PD-DL网络。结果表明,所提出的自监督PD-DL重建在有意义的血氧水平依赖(BOLD)分析中实现了高时空分辨率。

相似文献

本文引用的文献

9
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验