Suppr超能文献

基于二维过渡金属二卤化物和聚合物粘结剂的富含缺陷纳米组装体的空位驱动凝胶化及其在生物医学中的应用

Vacancy-Driven Gelation Using Defect-Rich Nanoassemblies of 2D Transition Metal Dichalcogenides and Polymeric Binder for Biomedical Applications.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Department of Metallurgical Engineering and Materials Sciences, Indian Institute of Technology Bombay, Mumbai, 400076, India.

出版信息

Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201702037. Epub 2017 Jul 24.

Abstract

A new approach of vacancy-driven gelation to obtain chemically crosslinked hydrogels from defect-rich 2D molybdenum disulfide (MoS ) nanoassemblies and polymeric binder is reported. This approach utilizes the planar and edge atomic defects available on the surface of the 2D MoS nanoassemblies to form mechanically resilient and elastomeric nanocomposite hydrogels. The atomic defects present on the lattice plane of 2D MoS nanoassemblies are due to atomic vacancies and can act as an active center for vacancy-driven gelation with a thiol-activated terminal such as four-arm poly(ethylene glycol)-thiol (PEG-SH) via chemisorption. By modulating the number of vacancies on the 2D MoS nanoassemblies, the physical and chemical properties of the hydrogel network can be controlled. This vacancy-driven gelation process does not require external stimuli such as UV exposure, chemical initiator, or thermal agitation for crosslinking and thus provides a nontoxic and facile approach to encapsulate cells and proteins. 2D MoS nanoassemblies are cytocompatible, and encapsulated cells in the nanocomposite hydrogels show high viability. Overall, the nanoengineered hydrogel obtained from vacancy-driven gelation is mechanically resilient and can be used for a range of biomedical applications including tissue engineering, regenerative medicine, and cell and therapeutic delivery.

摘要

一种新的空位驱动凝胶化方法被报道,用于从富含原子空位的二维二硫化钼(MoS )纳米组装体和聚合物粘结剂中获得化学交联水凝胶。该方法利用二维 MoS 纳米组装体表面存在的平面和边缘原子缺陷,形成具有机械弹性和弹性的纳米复合水凝胶。二维 MoS 纳米组装体晶格平面上存在的原子缺陷是由于原子空位,可以作为活性中心,与巯基激活的末端(如四臂聚乙二醇-硫醇(PEG-SH))通过化学吸附进行空位驱动凝胶化。通过调节二维 MoS 纳米组装体上的空位数量,可以控制水凝胶网络的物理和化学性质。这种空位驱动凝胶化过程不需要外部刺激(如紫外线照射、化学引发剂或热搅拌)进行交联,因此提供了一种无毒且简便的方法来封装细胞和蛋白质。二维 MoS 纳米组装体具有细胞相容性,包封在纳米复合水凝胶中的细胞具有高活力。总的来说,通过空位驱动凝胶化获得的纳米工程水凝胶具有机械弹性,可用于一系列生物医学应用,包括组织工程、再生医学和细胞及治疗药物输送。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验