Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
Mol Cell. 2017 Oct 19;68(2):361-373.e5. doi: 10.1016/j.molcel.2017.08.019. Epub 2017 Sep 21.
No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.
无终止衰变(NGD)是一种真核生物质量控制机制,其进化是为了应对翻译停滞。该过程的特征是在停滞序列附近进行内切核酸酶切割,但具体的机制尚不清楚。我们对切割位点的分析表明,切割需要 mRNA 上的多个核糖体。我们还表明,在起始密码子附近带有停滞序列的报告基因不能容纳多个核糖体,因此不受 NGD 的影响。与我们的模型一致,我们发现每个 mRNA 的核糖体密度与切割效率呈反比。此外,在体内促进全局核糖体碰撞会导致核糖体蛋白的泛素化,这表明细胞通过碰撞来感知下游的质量控制过程。总之,我们的数据表明,NGD 和随后的质量控制是由核糖体碰撞引发的。该模型为质量控制过程的调控以及它们如何减少脱靶效应提供了思路。
Mol Cell. 2017-9-21
J Mol Biol. 2024-3-15
Nat Struct Mol Biol. 2012-6-5
Trends Biochem Sci. 2025-7-10
Nat Struct Mol Biol. 2025-6-5
Biochem Soc Trans. 2025-6-30
Proc Natl Acad Sci U S A. 2025-4-15
J R Soc Interface. 2025-3
Nucleic Acids Res. 2025-2-27
Wiley Interdiscip Rev RNA. 2017-1
Nat Struct Mol Biol. 2016-1
Nat Rev Cancer. 2015-12-15