Suppr超能文献

由磁粒子成像场梯度引导的磁性纳米粒子空间聚焦加热的理论预测

Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.

作者信息

Dhavalikar Rohan, Rinaldi Carlos

机构信息

Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611, USA.

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida,1275 Center Drive, Gainesville, FL 32611, USA.

出版信息

J Magn Magn Mater. 2016 Dec 1;419:267-273. doi: 10.1016/j.jmmm.2016.06.038. Epub 2016 Jun 16.

Abstract

Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers , with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.

摘要

处于交变磁场(AMF)中的磁性纳米颗粒会以热的形式将部分磁场能量传递给周围环境,这一特性在通过热疗进行癌症治疗以及开发可利用磁场外部驱动释放所载药物的磁性药物载体方面引起了广泛关注。迄今为止,该领域的大多数工作都集中在利用交变磁场促使纳米颗粒在大面积区域释放热量,而无法选择特定的载有纳米颗粒的区域进行加热,同时使其他载有纳米颗粒的区域不受影响。与此同时,磁性粒子成像(MPI)已成为一种有前景的成像磁性纳米颗粒示踪剂分布的方法,其空间分辨率可达亚毫米级。MPI的基本原理是应用一个选择磁场梯度,该梯度定义了一个低偏置场的小区域,再叠加一个交变磁场(其频率和幅度低于通常用于促使纳米颗粒发热的交变磁场),以获得一个与低偏置场区域内颗粒浓度成正比的信号。在此,我们扩展了先前用于估计均匀交变磁场中磁性纳米颗粒能量耗散率的模型,以提供理论预测,说明如何利用MPI中使用的选择磁场梯度来选择性地促使磁性纳米颗粒在选择磁场梯度的低偏置场区域发热。针对代表当前MPI技术所能实现的磁场梯度下能量耗散率的空间衰减给出了理论预测。这些结果强调了结合MPI和更高幅度/频率驱动的交变磁场以实现由MPI引导的选择性磁流体热疗(MFH)的潜力。

相似文献

1
Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
J Magn Magn Mater. 2016 Dec 1;419:267-273. doi: 10.1016/j.jmmm.2016.06.038. Epub 2016 Jun 16.
2
Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform.
Phys Med Biol. 2017 May 7;62(9):3483-3500. doi: 10.1088/1361-6560/aa5601. Epub 2016 Dec 29.
5
Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment.
Int J Hyperthermia. 2020 Dec;37(3):141-154. doi: 10.1080/02656736.2020.1853252.
6
A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
Comput Methods Programs Biomed. 2023 Jun;235:107546. doi: 10.1016/j.cmpb.2023.107546. Epub 2023 Apr 10.
7
Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.
Nanotheranostics. 2024 Feb 12;8(2):163-178. doi: 10.7150/ntno.90360. eCollection 2024.
8
Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy.
Nanoscale. 2020 Sep 21;12(35):18342-18355. doi: 10.1039/d0nr00604a. Epub 2020 Sep 1.
9
Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
Med Phys. 2022 Apr;49(4):2590-2601. doi: 10.1002/mp.15509. Epub 2022 Feb 18.
10
A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging.
IEEE Trans Biomed Eng. 2024 Aug;71(8):2528-2536. doi: 10.1109/TBME.2024.3378650. Epub 2024 Jul 18.

引用本文的文献

1
Effect of magnetic anisotropy and interaction on spatial focused hyperthermia for rotating and oscillating fields.
Heliyon. 2024 Sep 22;10(19):e38290. doi: 10.1016/j.heliyon.2024.e38290. eCollection 2024 Oct 15.
2
Spatially selective delivery of living magnetic microrobots through torque-focusing.
Nat Commun. 2024 Mar 9;15(1):2160. doi: 10.1038/s41467-024-46407-4.
3
Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects.
Mol Imaging Biol. 2023 Dec;25(6):1020-1033. doi: 10.1007/s11307-023-01856-z. Epub 2023 Oct 3.
4
Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field.
Beilstein J Nanotechnol. 2023 Apr 14;14:485-493. doi: 10.3762/bjnano.14.39. eCollection 2023.
5
Spatial focusing of magnetic particle hyperthermia.
Nanoscale Adv. 2019 Nov 25;2(1):408-416. doi: 10.1039/c9na00667b. eCollection 2020 Jan 22.
6
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3):e1779. doi: 10.1002/wnan.1779. Epub 2022 Mar 3.
9
Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells.
Int J Nanomedicine. 2018 Aug 23;13:4771-4779. doi: 10.2147/IJN.S171130. eCollection 2018.

本文引用的文献

1
Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging.
J Appl Phys. 2015 Nov 7;118(17):173906. doi: 10.1063/1.4935158. Epub 2015 Nov 5.
2
Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.
Biomaterials. 2014 Aug;35(24):6400-11. doi: 10.1016/j.biomaterials.2014.04.036. Epub 2014 May 9.
3
Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment.
ACS Nano. 2014 May 27;8(5):4268-83. doi: 10.1021/nn405356r. Epub 2014 Apr 21.
4
Near-infrared-actuated devices for remotely controlled drug delivery.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1349-54. doi: 10.1073/pnas.1322651111. Epub 2014 Jan 13.
5
Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.
Int J Nanomedicine. 2014;9:145-53. doi: 10.2147/IJN.S51435. Epub 2013 Dec 20.
6
Physics of heat generation using magnetic nanoparticles for hyperthermia.
Int J Hyperthermia. 2013 Dec;29(8):715-29. doi: 10.3109/02656736.2013.836758. Epub 2013 Oct 16.
7
Magnetic fluid hyperthermia: advances, challenges, and opportunity.
Int J Hyperthermia. 2013 Dec;29(8):706-14. doi: 10.3109/02656736.2013.837200. Epub 2013 Oct 9.
8
X-space MPI: magnetic nanoparticles for safe medical imaging.
Adv Mater. 2012 Jul 24;24(28):3870-7. doi: 10.1002/adma.201200221.
9
Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field.
Phys Med. 2013 Nov;29(6):624-30. doi: 10.1016/j.ejmp.2012.08.005. Epub 2012 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验