文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

台式磁粒子弛豫计,用于检测、表征和分析磁性纳米粒子。

Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.

机构信息

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32608, United States of America.

出版信息

Phys Med Biol. 2018 Sep 6;63(17):175016. doi: 10.1088/1361-6560/aad97d.


DOI:10.1088/1361-6560/aad97d
PMID:30095085
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6201298/
Abstract

This paper presents the design, construction, and testing of a magnetic particle relaxometer (MPR) to assess magnetic nanoparticle response to dynamic magnetic fields while subjected to a bias field. The designed MPR can characterize magnetic particles for use as tracers in magnetic particle imaging (MPI), with the variation of an applied bias field emulating the scan of the MPI field free point. The system applies a high-frequency time-varying excitation field (up to 45 mT at 30 kHz), while slowly ramping a bias field (±100 mT in 1 s). The time-resolved response of the sample is measured using an inductive sensing coil system, made of a pick-up coil and a rotating and translating balancing coil to finely cancel the induction feed-through from the excitation field. A post-processing algorithm is presented to extract the tracer response related to the point spread function for MPI applications, and the performance of the MPR is demonstrated using superparamagnetic iron oxide particles (ferucarbotran).

摘要

本文介绍了一种磁粒子弛豫计(MPR)的设计、构建和测试,用于评估磁性纳米粒子在施加偏置场时对动态磁场的响应。设计的 MPR 可用于表征作为磁性粒子成像(MPI)示踪剂的磁性粒子,施加偏置场的变化模拟 MPI 无场点的扫描。该系统施加高频时变激励场(在 30 kHz 时高达 45 mT),同时缓慢斜坡偏置场(在 1 s 内±100 mT)。使用感应传感线圈系统测量样品的时间分辨响应,该系统由一个拾波线圈和一个旋转和平移的平衡线圈组成,以精细地抵消激励场的感应馈通。本文提出了一种后处理算法,用于提取与 MPI 应用相关的点扩散函数的示踪剂响应,并用超顺磁性氧化铁颗粒(ferucarbotran)演示了 MPR 的性能。

相似文献

[1]
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.

Phys Med Biol. 2018-9-6

[2]
Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging.

Mol Imaging Biol. 2017-6

[3]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

[4]
Magnetic particle imaging: introduction to imaging and hardware realization.

Z Med Phys. 2012-8-19

[5]
Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.

Biomed Tech (Berl). 2013-12

[6]
Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization.

Rev Sci Instrum. 2016-5

[7]
Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method.

BMC Med Imaging. 2013-6-5

[8]
First in vivo traveling wave magnetic particle imaging of a beating mouse heart.

Phys Med Biol. 2016-9-21

[9]
Trajectory analysis for field free line magnetic particle imaging.

Med Phys. 2019-2-22

[10]
In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach.

Phys Med Biol. 2017-5-7

引用本文的文献

[1]
Open-source device for high sensitivity magnetic particle spectroscopy, relaxometry, and hysteresis loop tracing.

Rev Sci Instrum. 2024-6-1

[2]
Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.

Sensors (Basel). 2022-11-14

[3]
Magnetic Particle Spectroscopy with One-Stage Lock-In Implementation for Magnetic Bioassays with Improved Sensitivities.

J Phys Chem C Nanomater Interfaces. 2021-8-12

[4]
AC magnetometry with active stabilization and harmonic suppression for magnetic nanoparticle spectroscopy and thermometry.

J Appl Phys. 2020

本文引用的文献

[1]
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.

ACS Nano. 2018-3-28

[2]
Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.

J Magn Magn Mater. 2016-12-1

[3]
Relaxation-based viscosity mapping for magnetic particle imaging.

Phys Med Biol. 2017-5-7

[4]
Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.

AIP Adv. 2017-3-2

[5]
Blood clot detection using magnetic nanoparticles.

AIP Adv. 2017-2-16

[6]
Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.

Methods Mol Biol. 2017

[7]
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

ACS Nano. 2017-2-14

[8]
Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging.

Phys Med Biol. 2017-5-7

[9]
In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.

Phys Med Biol. 2017-5-7

[10]
In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach.

Phys Med Biol. 2017-5-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索