Suppr超能文献

二氧化钛纳米颗粒摄入改变小肠模型中的营养吸收。

Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an Model of the Small Intestine.

作者信息

Guo Zhongyuan, Martucci Nicole J, Moreno-Olivas Fabiola, Tako Elad, Mahler Gretchen J

机构信息

Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902.

Plant, Soil and Nutrition Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, NY.

出版信息

NanoImpact. 2017 Jan;5:70-82. doi: 10.1016/j.impact.2017.01.002. Epub 2017 Jan 18.

Abstract

Ingestion of titanium dioxide (TiO) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO nanoparticles with an cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food.

摘要

从农用化学品、加工食品和营养补充剂等产品中摄入二氧化钛(TiO)纳米颗粒几乎是不可避免的。胃肠道是人体与外部环境之间的关键界面,也是必需营养物质吸收的场所。本研究的目的是使用小肠上皮细胞培养模型来研究摄入30纳米二氧化钛纳米颗粒的影响,并确定急性或慢性暴露于纳米二氧化钛如何影响肠道屏障功能、活性氧生成、促炎信号传导、营养物质吸收(铁、锌、脂肪酸)以及刷状缘膜酶功能(肠碱性磷酸酶)。将Caco-2/HT29-MTX细胞培养模型暴露于生理相关剂量的二氧化钛纳米颗粒中,分别进行急性(四小时)或慢性(五天)暴露。慢性暴露于二氧化钛纳米颗粒后,肠道屏障功能显著下降。活性氧(ROS)生成、促炎信号传导和肠碱性磷酸酶活性均显示出对纳米二氧化钛的反应增加。暴露于二氧化钛纳米颗粒后,铁、锌和脂肪酸的转运显著减少。这是因为纳米颗粒暴露导致肠上皮细胞中吸收性微绒毛减少。营养转运蛋白基因表达也发生了改变,这表明细胞正在努力调节因摄入纳米颗粒而受到干扰的转运机制。总体而言,这些结果表明,生理相关剂量的纳米颗粒(通常从食物中摄入)暴露会在功能水平上影响肠上皮细胞。

相似文献

1
Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an Model of the Small Intestine.
NanoImpact. 2017 Jan;5:70-82. doi: 10.1016/j.impact.2017.01.002. Epub 2017 Jan 18.
2
Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model.
Nanotoxicology. 2018 Jun;12(5):485-508. doi: 10.1080/17435390.2018.1463407. Epub 2018 Apr 18.
5
Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation.
Cell Biol Toxicol. 2014 Jun;30(3):169-88. doi: 10.1007/s10565-014-9278-1. Epub 2014 May 11.
7
Bacteria Remediate the Effects of Food Additives on Intestinal Function in an Model of the Gastrointestinal Tract.
Front Nutr. 2020 Aug 12;7:131. doi: 10.3389/fnut.2020.00131. eCollection 2020.
9
ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine.
Food Chem Toxicol. 2019 Feb;124:112-127. doi: 10.1016/j.fct.2018.11.048. Epub 2018 Nov 29.
10
In vitro intestinal epithelium responses to titanium dioxide nanoparticles.
Food Res Int. 2019 May;119:634-642. doi: 10.1016/j.foodres.2018.10.041. Epub 2018 Oct 12.

引用本文的文献

1
Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts.
ACS Omega. 2024 Aug 16;9(34):36001-36022. doi: 10.1021/acsomega.4c00062. eCollection 2024 Aug 27.
8
Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review.
Nanomaterials (Basel). 2022 Sep 21;12(19):3275. doi: 10.3390/nano12193275.
9
The impact of selected food additives on the gastrointestinal tract in the example of nonspecific inflammatory bowel diseases.
Arch Med Sci. 2021 Jan 8;18(5):1286-1296. doi: 10.5114/aoms/125001. eCollection 2022.
10
Ingestion of titanium dioxide nanoparticles: a definite health risk for consumers and their progeny.
Arch Toxicol. 2022 Oct;96(10):2655-2686. doi: 10.1007/s00204-022-03334-x. Epub 2022 Jul 27.

本文引用的文献

1
Intestinal inflammation requires FOXO3 and prostaglandin E2-dependent lipogenesis and elevated lipid droplets.
Am J Physiol Gastrointest Liver Physiol. 2016 May 15;310(10):G844-54. doi: 10.1152/ajpgi.00407.2015. Epub 2016 Mar 11.
2
Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
Langmuir. 2016 Mar 8;32(9):2216-24. doi: 10.1021/acs.langmuir.5b04160. Epub 2016 Feb 22.
3
Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents.
Nanotoxicology. 2016 Sep;10(7):913-23. doi: 10.3109/17435390.2016.1141338. Epub 2016 Feb 22.
4
Intravital imaging of intestinal lacteals unveils lipid drainage through contractility.
J Clin Invest. 2015 Nov 2;125(11):4042-52. doi: 10.1172/JCI76509. Epub 2015 Oct 5.
5
Persistent low expression of hZip1 in mucinous carcinomas of the ovary, colon, stomach and lung.
J Ovarian Res. 2015 Jun 17;8:40. doi: 10.1186/s13048-015-0169-8.
6
Differential effects of basolateral and apical iron supply on iron transport in Caco-2 cells.
Genes Nutr. 2015 May;10(3):463. doi: 10.1007/s12263-015-0463-5. Epub 2015 Apr 22.
8
Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation.
Nutrients. 2015 Mar 31;7(4):2274-96. doi: 10.3390/nu7042274.
9
Regulation of intracellular Zn homeostasis in two intestinal epithelial cell models at various maturation time points.
J Physiol Sci. 2015 Jul;65(4):317-28. doi: 10.1007/s12576-015-0369-4. Epub 2015 Mar 11.
10
Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine.
Prostaglandins Leukot Essent Fatty Acids. 2015 Feb;93:9-16. doi: 10.1016/j.plefa.2014.10.001. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验