文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二氧化钛饲料添加剂与脂多糖联合作用对慢性暴露后小鼠肠道屏障功能的影响。

The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs.

机构信息

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.

出版信息

Part Fibre Toxicol. 2021 Feb 17;18(1):8. doi: 10.1186/s12989-021-00399-x.


DOI:10.1186/s12989-021-00399-x
PMID:33596948
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7887831/
Abstract

OBJECTIVE: Up to 44% of particulates of food-grade titanium dioxide (TiO) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven't been fully understood yet. This study is aimed to study the effect of two kinds of TiO nanoparticles (TiO NPs and TiO MPs) on intestinal barrier functions, to reveal the combined effect of TiO NPs and Lipopolysaccharide (LPS) on intestinal barrier. METHODS: Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO-mixed feed (containing 1% (mass fraction, w/w) TiO NPs or TiO MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO, the intestinal barrier functions and the inflammatory response were evaluated. RESULTS: Both TiO notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO NPs led to reduced feed consumption, TiO MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn't change in both TiO exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO NPs and LPS, but there are complicated interactions between TiO MPs and LPS. CONCLUSION: Long-term intake of food additive TiO could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO being ingested with feed.

摘要

目的:食品级二氧化钛(TiO)的颗粒中,有 44%可达纳米级,但其与其他物质共同作用对肠道屏障的影响尚未完全阐明。本研究旨在研究两种 TiO 纳米颗粒(TiO NPs 和 TiO MPs)对肠道屏障功能的影响,揭示 TiO NPs 与脂多糖(LPS)联合作用对肠道屏障的影响。

方法:雄性 ICR 小鼠随机分为 18 组(3 种饲料类型×3 种暴露时间×2 种 LPS 剂量),分别用正常饲料或含 1%(质量分数,w/w)TiO NPs 或 TiO MPs 的 TiO 混合饲料喂养 1、3、6 个月,随后单次口服 0 或 10 mg/(kg 体重)LPS。4 小时后,评估 TiO 的转运、肠道屏障功能和炎症反应。

结果:暴露 1 和 3 个月后,TiO 显著增加了回肠绒毛高度/隐窝深度比值,暴露 1 个月后增加了回肠紧密连接蛋白(ZO-1 和 occludin)的表达。暴露 6 个月后,TiO NPs 导致摄食量减少,TiO MPs 导致小肠微绒毛稀疏和血细胞中 Ti 含量升高。两种 TiO 暴露组的肠道通透性均无变化。LPS 处理后,我们观察到(TiO+LPS)暴露组回肠绒毛高度/隐窝深度比值改变,肠道通透性(DAO)降低,回肠 ZO-1 表达上调。除 LPS 处理组血清 TNF-α水平升高外,回肠或血清细胞因子无明显变化。TiO NPs 和 LPS 之间存在拮抗作用,但 TiO MPs 和 LPS 之间存在复杂的相互作用。

结论:长期摄入食品添加剂 TiO 可能会改变肠道上皮结构,而不会影响肠道屏障功能。TiO 和 LPS 的共同暴露会增强肠道屏障功能,而不会引起明显的炎症反应,TiO NPs 和 LPS 之间存在拮抗作用。所有观察到的轻微影响可能与 TiO 随饲料摄入的温和暴露方法有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/6b58745879be/12989_2021_399_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/4aec830fe977/12989_2021_399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/84413d1bde10/12989_2021_399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/8848ffe99747/12989_2021_399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/9b49b3aba775/12989_2021_399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/729f84df3196/12989_2021_399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/90baba8383ae/12989_2021_399_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/6b58745879be/12989_2021_399_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/4aec830fe977/12989_2021_399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/84413d1bde10/12989_2021_399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/8848ffe99747/12989_2021_399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/9b49b3aba775/12989_2021_399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/729f84df3196/12989_2021_399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/90baba8383ae/12989_2021_399_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6a/7887831/6b58745879be/12989_2021_399_Fig7_HTML.jpg

相似文献

[1]
The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs.

Part Fibre Toxicol. 2021-2-17

[2]
[Effects of titanium dioxide nanoparticles and lipopolysaccharide on antioxidant function of liver tissues in mice].

Beijing Da Xue Xue Bao Yi Xue Ban. 2018-6-18

[3]
Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose.

Nanotoxicology. 2020-12

[4]
Combined effects of TiO nanoparticle and fipronil co-exposure on microbiota in mouse intestine.

Food Chem Toxicol. 2024-10

[5]
Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO particles: an in vivo and ex vivo study in mice.

Part Fibre Toxicol. 2020-6-11

[6]
Oral exposure of titanium oxide nanoparticles induce ileum physical barrier dysfunction via Th1/Th2 imbalance.

Environ Toxicol. 2020-4-25

[7]
Effects of titanium dioxide microparticles and nanoparticles on cytoskeletal organization, cell adhesion, migration, and proliferation in human gingival fibroblasts in the presence of lipopolysaccharide.

J Periodontal Res. 2022-6

[8]
Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota.

Environ Toxicol Pharmacol. 2020-11

[9]
Pre-Exposure to TiO2-NPs Aggravates Alcohol-Related Liver Injury by Inducing Intestinal Barrier Damage in Mice.

Toxicol Sci. 2021-12-28

[10]
Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age.

Br J Nutr. 2018-6

引用本文的文献

[1]
Advances in the study of Ophiopogon japonicus polysaccharides: structural characterization, bioactivity and gut microbiota modulation regulation.

Front Pharmacol. 2025-5-2

[2]
Inhibition of CHI3L1 attenuates excessive autophagy in intestinal epithelial cells to reduce the severity of necrotizing enterocolitis.

Cell Death Discov. 2025-4-5

[3]
Inhibition of IEC-6 Cell Proliferation and the Mechanism of Ulcerative Colitis in C57BL/6 Mice by Dandelion Root Polysaccharides.

Foods. 2023-10-17

[4]
Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway.

Part Fibre Toxicol. 2023-6-22

[5]
Passing of Nanocarriers across the Histohematic Barriers: Current Approaches for Tumor Theranostics.

Nanomaterials (Basel). 2023-3-23

[6]
Preliminary Evidence of Differentially Induced Immune Responses by Microparticle-adsorbed LPS in Patients with Crohn's Disease.

J Cell Immunol. 2022

[7]
Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles.

Cell Prolif. 2023-8

[8]
Intestinal microbiota analysis and network pharmacology reveal the mechanism by which Lianhua Qingwen capsule improves the immune function of mice infected with influenza A virus.

Front Microbiol. 2022-11-25

[9]
Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review.

Nanomaterials (Basel). 2022-9-21

[10]
5-Fluorouracil and Curcumin Combination Coated with Pectin and Its Strategy towards Titanium Dioxide, Dimethylhydrazine Colorectal Cancer Model with the Evaluation of the Blood Parameters.

Polymers (Basel). 2022-7-14

本文引用的文献

[1]
The Influence of Long-Term Dietary Intake of Titanium Dioxide Particles on Elemental Homeostasis and Tissue Structure of Mouse Organs.

J Nanosci Nanotechnol. 2021-10-1

[2]
Impact of titanium dioxide nanoparticles on intestinal community in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis mice and the intervention effect of vitamin E.

Nanoscale. 2021-1-28

[3]
Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose.

Nanotoxicology. 2020-12

[4]
Food-grade titanium dioxide (E171) by solid or liquid matrix administration induces inflammation, germ cells sloughing in seminiferous tubules and blood-testis barrier disruption in mice.

J Appl Toxicol. 2019-8-15

[5]
Dynamic Intermolecular Interactions Control Adsorption from Mixtures of Natural Organic Matter and Protein onto Titanium Dioxide Nanoparticles.

Environ Sci Technol. 2018-12-10

[6]
Effects of differently shaped TiONPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier.

Part Fibre Toxicol. 2018-8-7

[7]
Food-grade TiO is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection.

J Nanobiotechnology. 2018-6-19

[8]
Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage.

J Appl Toxicol. 2018-5-3

[9]
Pro-inflammatory adjuvant properties of pigment-grade titanium dioxide particles are augmented by a genotype that potentiates interleukin 1β processing.

Part Fibre Toxicol. 2017-12-8

[10]
Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System.

Semin Immunol. 2017-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索