Inlow Mark, Cong Shan, Risacher Shannon L, West John, Rizkalla Maher, Salama Paul, Saykin Andrew J, Shen Li
Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA.
Electrical and Computer Engineering, Purdue University Indianapolis, IN, USA.
Med Imaging Augment Real (2016). 2016;9805:302-310. doi: 10.1007/978-3-319-43775-0_27. Epub 2016 Aug 14.
In this work, we propose a novel and powerful image analysis framework for hippocampal morphometry in early mild cognitive impairment (EMCI), an early prodromal stage of Alzheimer's disease (AD). We create a hippocampal surface atlas with subfield information, model each hippocampus using the SPHARM technique, and register it to the atlas to extract surface deformation signals. We propose a new alternative to standard random field theory (RFT) and permutation image analysis methods, , to perform statistical shape analysis and compare its performance with that of RFT methods on both simulated and real hippocampal surface data. The major strengths of our framework are twofold: (a) SPM-DA provides potentially more powerful algorithms than standard RFT methods for detecting weak signals, and (b) the framework embraces the important hippocampal subfield information for improved biological interpretation. We demonstrate the effectiveness of our method via an application to an AD cohort, where an SPM-DA method detects meaningful hippocampal shape differences in EMCI that are undetected by standard RFT methods.
在这项工作中,我们为早期轻度认知障碍(EMCI,阿尔茨海默病(AD)的早期前驱阶段)的海马形态测量提出了一种新颖且强大的图像分析框架。我们创建了一个带有子区域信息的海马表面图谱,使用SPHARM技术对每个海马进行建模,并将其注册到图谱以提取表面变形信号。我们提出了一种替代标准随机场理论(RFT)和置换图像分析方法的新方法,以进行统计形状分析,并在模拟和真实海马表面数据上比较其与RFT方法的性能。我们框架的主要优势有两方面:(a)与标准RFT方法相比,SPM - DA为检测微弱信号提供了可能更强大的算法,(b)该框架包含重要的海马子区域信息以改进生物学解释。我们通过将该方法应用于一个AD队列来证明其有效性,在该队列中,一种SPM - DA方法检测到了标准RFT方法未检测到的EMCI中有意义的海马形状差异。