Suppr超能文献

利用鲁棒的自监督去噪单元从噪声、欠采样训练数据中进行自监督磁共振成像重建

Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.

作者信息

Millard Charles, Chiew Mark

机构信息

Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford OX3 9DU, UK.

Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada.

出版信息

Bioengineering (Basel). 2024 Dec 23;11(12):1305. doi: 10.3390/bioengineering11121305.

Abstract

Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term upon inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data are available for training. Both proposed methods are applicable to any network architecture, are straightforward to implement, and have a similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.

摘要

大多数现有的用于磁共振成像(MRI)重建的深度学习方法采用全监督训练,这种训练方式假设可以获得具有高信噪比(SNR)的全采样数据集用于训练。然而,在许多情况下,获取这样的数据集是非常不切实际的,甚至在技术上是不可行的。最近,已经提出了一些用于MRI重建的自监督方法,这些方法仅使用欠采样数据。然而,大多数此类方法,如通过数据欠采样的自监督学习(SSDU),容易受到测量数据中噪声引起的重建误差的影响。作为回应,我们提出了鲁棒的SSDU,它通过同时估计缺失的k空间样本并对可用样本进行去噪,可从有噪声的欠采样训练数据中可靠地恢复干净图像。鲁棒的SSDU训练重建网络,将数据的进一步有噪声和欠采样版本映射到原始的、仅有噪声的欠采样数据,并在推理时应用一个附加的Noisier2Noise校正项。我们还提出了一种相关方法Noiser2Full,当有噪声的全采样数据可用于训练时,它可以恢复干净图像。所提出的两种方法都适用于任何网络架构,易于实现,并且计算成本与标准训练相似。我们使用新颖的特定去噪架构在多线圈fastMRI脑数据集上评估我们的方法,发现它与在干净的全采样数据上训练的基准方法具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf57/11726718/42648108ee37/bioengineering-11-01305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验