Suppr超能文献

波长复用钩状纳米天线,用于机器学习的中红外光谱学。

Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.

Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore.

出版信息

Nat Commun. 2022 Jul 5;13(1):3859. doi: 10.1038/s41467-022-31520-z.

Abstract

Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss engineering method to optimize damping rate by reducing radiative loss using hook nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gradient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm). Leveraging the multi-dimensional features captured by WMHNA, we develop a machine learning method to extract complementary physical and chemical information from molecules. The proof-of-concept demonstration of molecular recognition from mixed alcohols (methanol, ethanol, and isopropanol) shows 100% identification accuracy from the microfluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs towards small-volume, real-time, label-free molecular recognition from various species in low concentrations for chemical and biological diagnostics.

摘要

红外(IR)等离子体纳米天线(PNA)是通过等离子体-分子相互作用的 IR 指纹吸收来识别分子的有力工具。然而,PNA 的灵敏度和带宽受到分子和传感热点之间的小重叠以及尖锐的等离子体共振峰的限制。除了增强 PNA 的电场和富集 PNA 表面上的分子等直观方法外,我们还提出了一种损耗工程方法,通过使用钩形纳米天线(HNA)来减少辐射损耗来优化阻尼率。此外,利用 HNA 从梯度尺寸的光谱复用,波长复用的 HNA(WMHNA)在连续超宽带区域(波长从 6 μm 到 9 μm)中用作超灵敏振动探针。利用 WMHNA 捕获的多维特征,我们开发了一种机器学习方法,从分子中提取互补的物理和化学信息。从混合醇(甲醇、乙醇和异丙醇)进行的分子识别的概念验证演示表明,微流控集成的 WMHNA 具有 100%的识别准确率。我们的工作为优化 PNA 提供了另一个自由度,可用于从小体积、实时、免标记的角度识别各种低浓度物种的分子,用于化学和生物诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b240/9256719/b4c334619c2a/41467_2022_31520_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验