Suppr超能文献

用于预测肺切除术后肺癌预后的胸部多模态PET/CT深度学习模型:一项回顾性多中心研究

Thorax-encompassing multi-modality PET/CT deep learning model for resected lung cancer prognostication: A retrospective, multicenter study.

作者信息

Christie Jaryd R, Romine Perrin, Eddy Karen, Chen Delphine L, Daher Omar, Abdelrazek Mohamed, Malthaner Richard A, Qiabi Mehdi, Nayak Rahul, Kinahan Paul, Nair Viswam S, Mattonen Sarah A

机构信息

Department of Medical Biophysics, Western University, London, Ontario, Canada.

Baines Imaging Research Laboratory, London Health Sciences Center, London, Ontario, Canada.

出版信息

Med Phys. 2025 Jun;52(6):4390-4402. doi: 10.1002/mp.17862. Epub 2025 May 3.

Abstract

BACKGROUND

Patients with early-stage non-small cell lung cancer (NSCLC) typically receive surgery as their primary form of treatment. However, studies have shown that a high proportion of these patients will experience a recurrence after their resection, leading to an increased risk of death. Cancer staging is currently the gold standard for establishing a patient's prognosis and can help clinicians determine patients who may benefit from additional therapy. However, medical images which are used to help determine the cancer stage, have been shown to hold unutilized prognostic information that can augment clinical data and better identify high-risk NSCLC patients. There remains an unmet need for models to incorporate clinical, pathological, surgical, and imaging information, and extend beyond the current staging system to assist clinicians in identifying patients who could benefit from additional therapy immediately after surgery.

PURPOSE

We aimed to determine whether a deep learning model (DLM) integrating FDG PET and CT imaging from the thoracic cavity along with clinical, surgical, and pathological information can predict NSCLC recurrence-free survival (RFS) and stratify patients into risk groups better than conventional staging.

MATERIALS AND METHODS

Surgically resected NSCLC patients enrolled between 2009 and 2018 were retrospectively analyzed from two academic institutions (local institution: 305 patients; external validation: 195 patients). The thoracic cavity (including the lungs, mediastinum, pleural interfaces, and thoracic vertebrae) was delineated on the preoperative FDG PET and CT images and combined with each patient's clinical, surgical, and pathological information. Using the local cohort of patients, a multi-modal DLM using these features was built in a training cohort (n = 225), tuned on a validation cohort (n = 45), and evaluated on testing (n = 35) and external validation (n = 195) cohorts to predict RFS and stratify patients into risk groups. The area under the curve (AUC), Kaplan-Meier curves, and log-rank test were used to assess the prognostic value of the model. The DLM's stratification performance was compared to the conventional staging stratification.

RESULTS

The multi-modal DLM incorporating imaging, pathological, surgical, and clinical data predicted RFS in the testing cohort (AUC = 0.78 [95% CI:0.63-0.94]) and external validation cohort (AUC = 0.66 [95% CI:0.58-0.73]). The DLM significantly stratified patients into high, medium, and low-risk groups of RFS in both the testing and external validation cohorts (multivariable log-rank p < 0.001) and outperformed conventional staging. Conventional staging was unable to stratify patients into three distinct risk groups of RFS (testing: p = 0.94; external validation: p = 0.38). Lastly, the DLM displayed the ability to further stratify patients significantly into sub-risk groups within each stage in the testing (stage I: p = 0.02, stage II: p = 0.03) and external validation (stage I: p = 0.05, stage II: p = 0.03) cohorts.

CONCLUSION

This is the first study to use multi-modality imaging along with clinical, surgical, and pathological data to predict RFS of NSCLC patients after surgery. The multi-modal DLM better stratified patients into risk groups of poor outcomes when compared to conventional staging and further stratified patients within each staging classification. This model has the potential to assist clinicians in better identifying patients that may benefit from additional therapy.

摘要

背景

早期非小细胞肺癌(NSCLC)患者通常接受手术作为主要治疗方式。然而,研究表明,这些患者中有很大一部分在切除术后会复发,导致死亡风险增加。癌症分期目前是确定患者预后的金标准,可帮助临床医生确定可能从额外治疗中获益的患者。然而,用于帮助确定癌症分期的医学影像已被证明含有未被利用的预后信息,这些信息可补充临床数据并更好地识别高危NSCLC患者。目前仍需要模型整合临床、病理、手术和影像信息,并超越当前的分期系统,以协助临床医生识别术后可立即从额外治疗中获益的患者。

目的

我们旨在确定一种深度学习模型(DLM),该模型整合来自胸腔的FDG PET和CT影像以及临床、手术和病理信息,是否能比传统分期更好地预测NSCLC的无复发生存期(RFS)并将患者分层为风险组。

材料与方法

对2009年至2018年间在两个学术机构登记的接受手术切除的NSCLC患者进行回顾性分析(本地机构:305例患者;外部验证:195例患者)。在术前FDG PET和CT影像上勾勒出胸腔(包括肺、纵隔、胸膜界面和胸椎),并与每位患者的临床、手术和病理信息相结合。利用本地患者队列,在训练队列(n = 225)中构建使用这些特征的多模态DLM,在验证队列(n = 45)中进行调整,并在测试(n = 35)和外部验证(n = 195)队列中进行评估,以预测RFS并将患者分层为风险组。使用曲线下面积(AUC)、Kaplan-Meier曲线和对数秩检验来评估模型的预后价值。将DLM的分层性能与传统分期分层进行比较。

结果

整合影像、病理、手术和临床数据的多模态DLM在测试队列(AUC = 0.78 [95% CI:0.63 - 0.94])和外部验证队列(AUC = 0.66 [95% CI:0.58 - 0.73])中预测了RFS。DLM在测试和外部验证队列中均将患者显著分层为RFS的高、中、低风险组(多变量对数秩p < 0.001),且优于传统分期。传统分期无法将患者分层为RFS的三个不同风险组(测试:p = 0.94;外部验证:p = 0.38)。最后,DLM在测试(I期:p = 0.02,II期:p = 0.03)和外部验证(I期:p = 0.05,II期:p = 0.03)队列中显示出能够在每个阶段内进一步将患者显著分层为亚风险组的能力。

结论

这是第一项使用多模态影像以及临床、手术和病理数据来预测NSCLC患者术后RFS的研究。与传统分期相比,多模态DLM能更好地将患者分层为不良结局的风险组,并在每个分期分类内进一步对患者进行分层。该模型有潜力协助临床医生更好地识别可能从额外治疗中获益的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验