Suppr超能文献

基于信息论的脑区划分

Brain parcellation based on information theory.

作者信息

Bonmati Ester, Bardera Anton, Boada Imma

机构信息

Institute of Informatics and Applications, University of Girona, Campus Montilivi, 17003 Girona, Spain.

Institute of Informatics and Applications, University of Girona, Campus Montilivi, 17003 Girona, Spain.

出版信息

Comput Methods Programs Biomed. 2017 Nov;151:203-212. doi: 10.1016/j.cmpb.2017.07.012. Epub 2017 Aug 31.

Abstract

BACKGROUND AND OBJECTIVE

In computational neuroimaging, brain parcellation methods subdivide the brain into individual regions that can be used to build a network to study its structure and function. Using anatomical or functional connectivity, hierarchical clustering methods aim to offer a meaningful parcellation of the brain at each level of granularity. However, some of these methods have been only applied to small regions and strongly depend on the similarity measure used to merge regions. The aim of this work is to present a robust whole-brain hierarchical parcellation that preserves the global structure of the network.

METHODS

Brain regions are modeled as a random walk on the connectome. From this model, a Markov process is derived, where the different nodes represent brain regions and in which the structure can be quantified. Functional or anatomical brain regions are clustered by using an agglomerative information bottleneck method that minimizes the overall loss of information of the structure by using mutual information as a similarity measure.

RESULTS

The method is tested with synthetic models, structural and functional human connectomes and is compared with the classic k-means. Results show that the parcellated networks preserve the main properties and are consistent across subjects.

CONCLUSION

This work provides a new framework to study the human connectome using functional or anatomical connectivity at different levels.

摘要

背景与目的

在计算神经影像学中,脑图谱分割方法将大脑细分为各个区域,这些区域可用于构建网络以研究其结构和功能。使用解剖或功能连接性,层次聚类方法旨在在每个粒度级别提供有意义的脑图谱分割。然而,其中一些方法仅应用于小区域,并且强烈依赖于用于合并区域的相似性度量。这项工作的目的是提出一种稳健的全脑层次分割方法,该方法能保留网络的全局结构。

方法

将脑区建模为连接组上的随机游走。基于此模型,导出一个马尔可夫过程,其中不同节点代表脑区,并且可以对其结构进行量化。通过使用凝聚信息瓶颈方法对功能或解剖脑区进行聚类,该方法通过使用互信息作为相似性度量来最小化结构的整体信息损失。

结果

该方法在合成模型、人类结构和功能连接组上进行了测试,并与经典的k均值方法进行了比较。结果表明,分割后的网络保留了主要特性,并且在不同个体间具有一致性。

结论

这项工作提供了一个新框架,用于在不同层面使用功能或解剖连接性来研究人类连接组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验