Suppr超能文献

革兰氏阴性菌中生物脱硫的代谢和过程工程。

Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

机构信息

Environmental Biology Department, Biological Research Center (CIB-CSIC), 28040 Madrid, Spain.

Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia.

出版信息

J Biotechnol. 2017 Nov 20;262:47-55. doi: 10.1016/j.jbiotec.2017.09.004. Epub 2017 Sep 22.

Abstract

Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored.

摘要

微生物脱硫或生物脱硫 (BDS) 是一种有吸引力的低成本和环保的补充技术,可与基于某些细菌具有特异性地从对化学处理具有抗药性的粗燃料中的 S-杂环化合物中去除硫的潜力的加氢处理化学工艺相结合。用于模型 S-杂环化合物的二苯并噻吩 (DBT) 和烷基取代的 DBT 的 4S 或 Dsz 硫特异性途径已在生理、生化和遗传水平上得到广泛研究,主要在革兰氏阳性菌中。然而,由于某些特性,例如广泛的代谢多功能性和易于遗传和基因组操作,已经使用了几种革兰氏阴性菌进行 BDS,这使得它们成为系统代谢工程策略的合适底盘。已经构建了大量的重组菌,其中许多是假单胞菌菌株,以克服脱硫过程中的主要瓶颈,即 dsz 操纵子的表达、Dsz 酶的活性、Dsz 途径的 retro-抑制、还原力的可用性、底物和中间体的摄取-分泌、对有机溶剂和金属的耐受性以及其他宿主特异性限制。然而,为了实现具有工业应用前景的 BDS 工艺,有必要将遗传和代谢水平上获得的所有知识和进展应用于工艺工程水平,即动力学建模、两相系统放大、提高传质速率、生物催化剂分离等。从油中存在的有机硫材料中生产高附加值产品也可以被视为一种具有经济可行性的过程,而这一过程几乎还没有开始探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验