Suppr超能文献

迭代重建量子噪声降低技术对计算机断层扫描影像组学特征的影响。

Effect of an iterative reconstruction quantum noise reduction technique on computed tomography radiomic features.

作者信息

Foy Joseph J, Shenouda Mena, Ramahi Sahar, Armato Samuel, Ginat Daniel Thomas

机构信息

The University of Chicago, Department of Radiology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2020 Nov;7(6):064007. doi: 10.1117/1.JMI.7.6.064007. Epub 2020 Dec 30.

Abstract

The goal of this study was to quantify the effects of iterative reconstruction on radiomics features of normal anatomic structures on head and neck computed tomography (CT) scans. Regions of interest (ROI) containing five different tissue types and an ROI containing only air were extracted from CT scans of the head and neck from 108 patients. Each scan was reconstructed using three different reconstruction levels (2, 4, and 6) in addition to bone, thin slice (1-mm slice thickness), and thin-bone reconstructions. From each ROI in all reconstructions, 142 radiomic features were calculated. For each of the six ROIs, features were compared between combinations of iDose levels (2v4, 4v6, and 2v6) with a threshold of after correcting for multiple comparisons ( ). Features from reconstructions were also compared to bone, thin slice, and thin-bone reconstructions. Spearman's rank correlation coefficient, , quantified the relative feature value agreement across reconstructions. When comparing radiomics features across the three reconstruction levels, over half of all features reflected significant differences for all tissue types, while no features demonstrated significant differences when extracted from air ROIs. When assessing feature value agreement, at least 97% of features reflected excellent agreement ( ) when comparing the three iDose levels for all ROIs. When comparing to bone, thin slice, and thin-bone reconstructions, more than half of all features demonstrated significant differences for all ROIs and of features reflected excellent agreement for all ROIs. Many radiomics features are dependent on the iterative reconstruction level, and the magnitude of this dependency is affected by the tissue from which features are extracted. For studies using images reconstructed using varying reconstruction levels, features robust to these should be used.

摘要

本研究的目的是量化迭代重建对头颈部计算机断层扫描(CT)正常解剖结构的影像组学特征的影响。从108例患者的头颈部CT扫描中提取包含五种不同组织类型的感兴趣区域(ROI)和仅包含空气的ROI。除了骨、薄层(1毫米层厚)和薄骨重建外,每次扫描还使用三种不同的重建水平(2、4和6)进行重建。从所有重建的每个ROI中计算142个影像组学特征。对于六个ROI中的每一个,在进行多重比较校正后,比较iDose水平组合(2对4、4对6和2对6)之间的特征,阈值为 。还将 重建的特征与骨、薄层和薄骨重建进行比较。Spearman等级相关系数 量化了 重建之间的相对特征值一致性。在比较三个 重建水平的影像组学特征时,所有组织类型的所有特征中超过一半反映出显著差异,而从空气ROI中提取时没有特征显示出显著差异。在评估特征值一致性时,在比较所有ROI的三个iDose水平时,至少97%的特征反映出极好的一致性( )。当将 与骨、薄层和薄骨重建进行比较时,所有ROI的所有特征中超过一半显示出显著差异,并且所有ROI的 特征反映出极好的一致性。许多影像组学特征依赖于迭代重建水平,并且这种依赖性的程度受提取特征的组织影响。对于使用不同 重建水平重建的图像进行的研究,应使用对这些变化具有鲁棒性的特征。

相似文献

本文引用的文献

3
Variation in algorithm implementation across radiomics software.不同放射组学软件在算法实现上的差异。
J Med Imaging (Bellingham). 2018 Oct;5(4):044505. doi: 10.1117/1.JMI.5.4.044505. Epub 2018 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验