Sander M, Herzog M, Pudell J E, Bargheer M, Weinkauf N, Pedersen M, Newby G, Sellmann J, Schwarzkopf J, Besse V, Temnov V V, Gaal P
Institute for Physics and Astronomy, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
Helmholtz-Zentrum Berlin for Materials and Energy GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin Germany.
Phys Rev Lett. 2017 Aug 18;119(7):075901. doi: 10.1103/PhysRevLett.119.075901.
X-ray reflectivity measurements of femtosecond laser-induced transient gratings (TG) are applied to demonstrate the spatiotemporal coherent control of thermally induced surface deformations on ultrafast time scales. Using grazing incidence x-ray diffraction we unambiguously measure the amplitude of transient surface deformations with sub-Å resolution. Understanding the dynamics of femtosecond TG excitations in terms of superposition of acoustic and thermal gratings makes it possible to develop new ways of coherent control in x-ray diffraction experiments. Being the dominant source of TG signal, the long-living thermal grating with spatial period Λ can be canceled by a second, time-delayed TG excitation shifted by Λ/2. The ultimate speed limits of such an ultrafast x-ray shutter are inferred from the detailed analysis of thermal and acoustic dynamics in TG experiments.
飞秒激光诱导瞬态光栅(TG)的X射线反射率测量被用于证明在超快时间尺度上对热诱导表面变形的时空相干控制。通过掠入射X射线衍射,我们以亚埃分辨率明确测量了瞬态表面变形的幅度。从声学光栅和热光栅叠加的角度理解飞秒TG激发的动力学,使得在X射线衍射实验中开发新的相干控制方法成为可能。作为TG信号的主要来源,具有空间周期Λ的长寿命热光栅可以被第二个延迟时间的TG激发抵消,该激发移动了Λ/2。这种超快X射线快门的极限速度是通过对TG实验中的热动力学和声学动力学的详细分析推断出来的。