Gong Zhe-Xuan, Foss-Feig Michael, Brandão Fernando G S L, Gorshkov Alexey V
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Lett. 2017 Aug 4;119(5):050501. doi: 10.1103/PhysRevLett.119.050501. Epub 2017 Jul 31.
We prove that the entanglement entropy of any state evolved under an arbitrary 1/r^{α} long-range-interacting D-dimensional lattice spin Hamiltonian cannot change faster than a rate proportional to the boundary area for any α>D+1. We also prove that for any α>2D+2, the ground state of such a Hamiltonian satisfies the entanglement area law if it can be transformed along a gapped adiabatic path into a ground state known to satisfy the area law. These results significantly generalize their existing counterparts for short-range interacting systems, and are useful for identifying dynamical phase transitions and quantum phase transitions in the presence of long-range interactions.
我们证明,对于任意α>D + 1,在任意1/r^{α}长程相互作用的D维晶格自旋哈密顿量作用下演化的任何态的纠缠熵变化速率不会快于与边界面积成比例的速率。我们还证明,对于任意α>2D + 2,如果这样一个哈密顿量的基态可以沿着一个有能隙的绝热路径变换为已知满足面积定律的基态,那么该基态满足纠缠面积定律。这些结果显著推广了短程相互作用系统中已有的对应结果,并且对于识别存在长程相互作用时的动力学相变和量子相变很有用。