Eldredge Zachary, Zhou Leo, Bapat Aniruddha, Garrison James R, Deshpande Abhinav, Chong Frederic T, Gorshkov Alexey V
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Res. 2020;2(3). doi: 10.1103/physrevresearch.2.033316.
There are many possible architectures of qubit connectivity that designers of future quantum computers will need to choose between. However, the process of evaluating a particular connectivity graph's performance as a quantum architecture can be difficult. In this paper, we show that a quantity known as the isoperimetric number establishes a lower bound on the time required to create highly entangled states. This metric we propose counts resources based on the use of two-qubit unitary operations, while allowing for arbitrarily fast measurements and classical feedback. We use this metric to evaluate the hierarchical architecture proposed by A. Bapat [Phys. Rev. A , 062328 (2018)] and find it to be a promising alternative to the conventional grid architecture. We also show that the lower bound that this metric places on the creation time of highly entangled states can be saturated with a constructive protocol, up to a factor logarithmic in the number of qubits.
未来量子计算机的设计者需要在众多可能的量子比特连接架构中做出选择。然而,评估特定连接图作为量子架构的性能可能会很困难。在本文中,我们表明,一个被称为等周数的量为创建高度纠缠态所需的时间建立了一个下限。我们提出的这个度量标准基于双量子比特酉操作的使用来计算资源,同时允许任意快速的测量和经典反馈。我们使用这个度量标准来评估A. Bapat [《物理评论A》,062328 (2018)] 提出的分层架构,并发现它是传统网格架构的一个有前景的替代方案。我们还表明,这个度量标准对高度纠缠态创建时间所设定的下限可以通过一个构造性协议达到饱和,最多相差一个与量子比特数成对数关系的因子。