Suppr超能文献

Molecular pathology of scrapie-associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie.

作者信息

Hope J, Multhaup G, Reekie L J, Kimberlin R H, Beyreuther K

机构信息

Agriculture and Food Research Council, Edinburgh.

出版信息

Eur J Biochem. 1988 Mar 1;172(2):271-7. doi: 10.1111/j.1432-1033.1988.tb13883.x.

Abstract

Scrapie-associated fibrils (SAF) are disease-specific structures found in extracts of the brains of animals affected with scrapie. These structures are pathological aggregates of a normal host protein (PrP). Abnormal post-translational modification of PrP has been suggested to explain its aberrant properties in scrapie-affected brains and although there is a form of PrP in SAF indistinguishable in size from the protein in uninfected brain, lower-molecular-mass variants of PrP are also found in SAF fractions. We report the characterisation of the multiple forms of PrP found in SAF fractions purified from mouse brain affected by the ME7 strain of scrapie. The quantitatively major forms of PrP in SAF prepared without the use of proteinase K have the amino-terminal sequence Lys-Lys-Arg-Pro-Lys-Pro-Gly-Gly-, identical to that predicted for the amino-terminus of normal mouse brain PrP. However N-terminal cleavage of some PrP does occur in vivo within a domain of repetitive sequences at sites similar to but distinct from those cut by proteinase K in vitro. This suggests the conformation of the protein in aggregates in vivo does not differ extensively from that in detergent-treated SAF in vitro. We conclude that the size diversity of PrP in SAF is only partly due to N-terminal proteolysis and is independent of the proteolysis that occurs if proteinase K is used in the purification of SAF. Apart from proteolytic changes in the structure of PrP, we found a novel, as yet unidentified, amino-acid derivative of the arginine residue at position 3 in mouse PrP, which may predispose PrP to form SAF.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验