Suppr超能文献

使用数据融合和对抗训练的个性化方法进行癫痫发作预测。

Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction.

作者信息

Yang Yong, Qin Xiaolin, Wen Han, Li Feng, Lin Xiaoguang

机构信息

Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China.

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.

出版信息

Front Comput Neurosci. 2023 May 4;17:1172987. doi: 10.3389/fncom.2023.1172987. eCollection 2023.

Abstract

Epilepsy is the second common neurological disorder after headache, accurate and reliable prediction of seizures is of great clinical value. Most epileptic seizure prediction methods consider only the EEG signal or extract and classify the features of EEG and ECG signals separately, the improvement of prediction performance from multimodal data is not fully considered. In addition, epilepsy data are time-varying, with differences between each episode in a patient, making it difficult for traditional curve-fitting models to achieve high accuracy and reliability. In order to improve the accuracy and reliability of the prediction system, we propose a novel personalized approach based on data fusion and domain adversarial training to predict epileptic seizures using leave-one-out cross-validation, which achieves an average accuracy, sensitivity and specificity of 99.70, 99.76, and 99.61%, respectively, with an average error alarm rate (FAR) of 0.001. Finally, the advantage of this approach is demonstrated by comparison with recent relevant literature. This method will be incorporated into clinical practice to provide personalized reference information for epileptic seizure prediction.

摘要

癫痫是仅次于头痛的第二常见神经系统疾病,准确可靠地预测癫痫发作具有重要的临床价值。大多数癫痫发作预测方法仅考虑脑电图(EEG)信号,或分别提取和分类EEG与心电图(ECG)信号的特征,未充分考虑多模态数据对预测性能的提升。此外,癫痫数据具有时变性,患者每次发作之间存在差异,这使得传统曲线拟合模型难以实现高精度和高可靠性。为提高预测系统的准确性和可靠性,我们提出一种基于数据融合和领域对抗训练的新型个性化方法,采用留一法交叉验证来预测癫痫发作,该方法的平均准确率、灵敏度和特异性分别达到99.70%、99.76%和99.61%,平均误报率(FAR)为0.001。最后,通过与近期相关文献的比较,证明了该方法的优势。此方法将被纳入临床实践,为癫痫发作预测提供个性化参考信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f78/10192566/d1dff996d4a1/fncom-17-1172987-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验