Suppr超能文献

人工智能基础:在个性化癌症免疫治疗中强制实施新抗原预测基准。

Groundwork for AI: Enforcing a benchmark for neoantigen prediction in personalized cancer immunotherapy.

机构信息

Graduate Institute of International and Development Studies, Geneva, Switzerland.

出版信息

Soc Stud Sci. 2023 Oct;53(5):787-810. doi: 10.1177/03063127231192857. Epub 2023 Aug 31.

Abstract

This article expands on recent studies of machine learning or artificial intelligence (AI) algorithms that crucially depend on benchmark datasets, often called 'ground truths.' These ground-truth datasets gather input-data and output-targets, thereby establishing what can be retrieved computationally and evaluated statistically. I explore the case of the Tumor nEoantigen SeLection Alliance (TESLA), a consortium-based ground-truthing project in personalized cancer immunotherapy, where the 'truth' of the targets-immunogenic neoantigens-to be retrieved by the would-be AI algorithms depended on a broad technoscientific network whose setting up implied important organizational and material infrastructures. The study shows that instead of grounding an undisputable 'truth', the TESLA endeavor ended up establishing a contestable reference, the biology of neoantigens and how to measure their immunogenicity having slightly evolved alongside this four-year project. However, even if this controversy played down the scope of the TESLA ground truth, it did not discredit the whole undertaking. The magnitude of the technoscientific efforts that the TESLA project set into motion and the needs it ultimately succeeded in filling for the scientific and industrial community counterbalanced its metrological uncertainties, effectively instituting its contestable representation of 'true' neoantigens within the field of personalized cancer immunotherapy (at least temporarily). More generally, this case study indicates that the enforcement of ground truths, and what it leaves out, is a necessary condition to enable AI technologies in personalized medicine.

摘要

本文扩展了最近关于机器学习或人工智能 (AI) 算法的研究,这些算法严重依赖基准数据集,通常称为“ground truths”。这些 ground-truth 数据集收集输入数据和输出目标,从而建立可以通过计算检索和通过统计评估的内容。我探讨了 Tumor nEoantigen SeLection Alliance (TESLA) 的案例,这是一个基于联盟的个性化癌症免疫治疗中的 ground-truthing 项目,其中潜在的 AI 算法要检索的“真相”——免疫原性新抗原——取决于一个广泛的技术科学网络,其建立意味着重要的组织和物质基础设施。该研究表明,TESLA 努力并没有建立一个无可争议的“真相”,而是建立了一个有争议的参考,新抗原的生物学及其免疫原性的测量方法随着这个为期四年的项目而略有发展。然而,即使这种争议降低了 TESLA 基准的范围,它也没有使整个事业失去信誉。TESLA 项目引发的技术科学努力的规模以及它最终成功满足科学界和工业界的需求,平衡了其计量不确定性,有效地在个性化癌症免疫治疗领域(至少暂时)确立了其有争议的“真实”新抗原的代表性。更普遍地说,这个案例研究表明,实施 ground truths 及其所排除的内容是使个性化医学中的人工智能技术成为必要条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/733d/10543129/0fc0e2670afb/10.1177_03063127231192857-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验