Suppr超能文献

基于 fMRI 的脑状态解码:使用半监督稀疏表示分类法。

Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.

School of Information Science & Technology, Beijing Normal University, Beijing 100875, China.

出版信息

Comput Intell Neurosci. 2018 Apr 19;2018:3956536. doi: 10.1155/2018/3956536. eCollection 2018.

Abstract

Multivariate classification techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Due to variabilities in fMRI data and the limitation of the collection of human fMRI data, it is not easy to train an efficient and robust supervised-learning classifier for fMRI data. Among various classification techniques, sparse representation classifier (SRC) exhibits a state-of-the-art classification performance in image classification. However, SRC has rarely been applied to fMRI-based decoding. This study aimed to improve SRC using unlabeled testing samples to allow it to be effectively applied to fMRI-based decoding. We proposed a semisupervised-learning SRC with an average coefficient (semiSRC-AVE) method that performed the classification using the average coefficient of each class instead of the reconstruction error and selectively updated the training dataset using new testing data with high confidence to improve the performance of SRC. Simulated and real fMRI experiments were performed to investigate the feasibility and robustness of semiSRC-AVE. The results of the simulated and real fMRI experiments showed that semiSRC-AVE significantly outperformed supervised learning SRC with an average coefficient (SRC-AVE) method and showed better performance than the other three semisupervised learning methods.

摘要

多元分类技术已被广泛应用于使用功能磁共振成像 (fMRI) 解码大脑状态。由于 fMRI 数据的可变性以及人类 fMRI 数据采集的限制,为 fMRI 数据训练高效且稳健的监督学习分类器并不容易。在各种分类技术中,稀疏表示分类器 (SRC) 在图像分类中表现出最先进的分类性能。然而,SRC 很少应用于基于 fMRI 的解码。本研究旨在使用未标记的测试样本改进 SRC,使其能够有效地应用于基于 fMRI 的解码。我们提出了一种使用平均系数进行分类的半监督学习 SRC (semiSRC-AVE) 方法,该方法使用每个类别的平均系数代替重构误差,并选择性地使用具有高置信度的新测试数据更新训练数据集,以提高 SRC 的性能。进行了模拟和真实 fMRI 实验以研究 semiSRC-AVE 的可行性和稳健性。模拟和真实 fMRI 实验的结果表明,semiSRC-AVE 显著优于使用平均系数的监督学习 SRC (SRC-AVE) 方法,并且比其他三种半监督学习方法表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09db/5933074/4f83cb6dbe26/CIN2018-3956536.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验