Suppr超能文献

微处理器招募到延伸的 RNA 聚合酶 II 是差异表达 microRNAs 所必需的。

Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs.

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.

Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA.

出版信息

Cell Rep. 2017 Sep 26;20(13):3123-3134. doi: 10.1016/j.celrep.2017.09.010.

Abstract

The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association.

摘要

成熟 microRNAs(miRNAs)的细胞丰度取决于核处理初级 miRNA 转录本(pri-miRNAs)为 miRNA 中间产物的效率。 Drosha 和 DGCR8 的 Microprocessor 复合物执行此操作,但尚不清楚是什么控制了 Microprocessor 对各种 pri-miRNAs 的差异加工。在这里,我们表明果蝇 DGCR8(Pasha)在被 Cdk9 激酶(pTEFb)磷酸化时直接与 RNA 聚合酶 II 延伸复合物的 C 末端结构域结合。当通过 Cdk9 活性丧失阻止结合时,检测到 pri-miRNA 加工的全局变化。在其顶端连接域中具有 UGU 序列基序的 pri-miRNAs 的加工增加,而缺乏这种基序的 pri-miRNAs 的加工减少。因此,RNA 聚合酶 II 的磷酸化将 Microprocessor 募集用于共转录加工非 UGU pri-miRNAs,否则这些 pri-miRNAs 的加工效率会很差。相比之下,具有 UGU 阳性的 pri-miRNAs 可通过与 RNA 聚合酶无关的 Microprocessor 进行有效加工。

相似文献

8
Autoregulatory mechanisms controlling the microprocessor.控制微处理器的自动调节机制。
Adv Exp Med Biol. 2011;700:56-66. doi: 10.1007/978-1-4419-7823-3_6.
9
N6-methyladenosine marks primary microRNAs for processing.N6-甲基腺苷标记初级微小RNA以便进行加工。
Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.

引用本文的文献

8
Parameters of clustered suboptimal miRNA biogenesis.簇状非最优 miRNA 生成的参数。
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2306727120. doi: 10.1073/pnas.2306727120. Epub 2023 Oct 3.
9
microRNAs in action: biogenesis, function and regulation.微小 RNA 在行动中:生物发生、功能和调节。
Nat Rev Genet. 2023 Dec;24(12):816-833. doi: 10.1038/s41576-023-00611-y. Epub 2023 Jun 28.

本文引用的文献

3
Structure of Human DROSHA.人 DROSHA 的结构。
Cell. 2016 Jan 14;164(1-2):81-90. doi: 10.1016/j.cell.2015.12.019. Epub 2015 Dec 31.
8
Functional Anatomy of the Human Microprocessor.人类微处理器的功能解剖学
Cell. 2015 Jun 4;161(6):1374-87. doi: 10.1016/j.cell.2015.05.010. Epub 2015 May 28.
10
N6-methyladenosine marks primary microRNAs for processing.N6-甲基腺苷标记初级微小RNA以便进行加工。
Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验