Suppr超能文献

使用 Scribe 从耦合的单细胞表达动力学推断因果基因调控网络。

Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.

机构信息

Molecular & Cellular Biology Program, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Department of Electrical Engineering, University of Washington, Seattle, WA, USA.

出版信息

Cell Syst. 2020 Mar 25;10(3):265-274.e11. doi: 10.1016/j.cels.2020.02.003. Epub 2020 Mar 4.

Abstract

Here, we present Scribe (https://github.com/aristoteleo/Scribe-py), a toolkit for detecting and visualizing causal regulatory interactions between genes and explore the potential for single-cell experiments to power network reconstruction. Scribe employs restricted directed information to determine causality by estimating the strength of information transferred from a potential regulator to its downstream target. We apply Scribe and other leading approaches for causal network reconstruction to several types of single-cell measurements and show that there is a dramatic drop in performance for "pseudotime"-ordered single-cell data compared with true time-series data. We demonstrate that performing causal inference requires temporal coupling between measurements. We show that methods such as "RNA velocity" restore some degree of coupling through an analysis of chromaffin cell fate commitment. These analyses highlight a shortcoming in experimental and computational methods for analyzing gene regulation at single-cell resolution and suggest ways of overcoming it.

摘要

在这里,我们介绍 Scribe(https://github.com/aristoteleo/Scribe-py),这是一个用于检测和可视化基因之间因果调控相互作用的工具包,并探索单细胞实验在网络重建方面的潜力。Scribe 使用受限的有向信息通过估计潜在调节剂与其下游靶标之间传递的信息的强度来确定因果关系。我们将 Scribe 和其他用于因果网络重建的领先方法应用于几种类型的单细胞测量,并表明与真实时间序列数据相比,“伪时间”有序的单细胞数据的性能有显著下降。我们证明了进行因果推断需要测量之间的时间耦合。我们通过对嗜铬细胞命运决定的分析表明,像“RNA 速度”这样的方法通过分析恢复了一定程度的耦合。这些分析突出了在单细胞分辨率分析基因调控的实验和计算方法中的一个缺点,并提出了克服该缺点的方法。

相似文献

10
Pseudotime Reconstruction Using TSCAN.使用TSCAN进行伪时间重建
Methods Mol Biol. 2019;1935:115-124. doi: 10.1007/978-1-4939-9057-3_8.

引用本文的文献

本文引用的文献

1
Sci-fate characterizes the dynamics of gene expression in single cells.科学命运学描述了单细胞中基因表达的动态。
Nat Biotechnol. 2020 Aug;38(8):980-988. doi: 10.1038/s41587-020-0480-9. Epub 2020 Apr 13.
2
NASC-seq monitors RNA synthesis in single cells.NASC-seq 监测单细胞中的 RNA 合成。
Nat Commun. 2019 Jul 17;10(1):3138. doi: 10.1038/s41467-019-11028-9.
4
RNA velocity of single cells.单细胞 RNA 速度。
Nature. 2018 Aug;560(7719):494-498. doi: 10.1038/s41586-018-0414-6. Epub 2018 Aug 8.
7
Exponential scaling of single-cell RNA-seq in the past decade.单细胞 RNA-seq 在过去十年中的指数级扩展。
Nat Protoc. 2018 Apr;13(4):599-604. doi: 10.1038/nprot.2017.149. Epub 2018 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验