Li Xiong, Rao Kun, Chen Chuang, Zhang Yuejin, Zhou Juan, Meng Xu, Hua Yi, Li Jie, Chen Haowen
School of Information and Software Engineering, East China Jiaotong University, Nanchang, China.
College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
NPJ Syst Biol Appl. 2025 Aug 13;11(1):94. doi: 10.1038/s41540-025-00564-4.
The gene regulatory network inference method based on bulk sequencing data not only confuses different types of cells, but also ignores the phenomenon of network dynamic changes with cell state. Single cell transcriptome sequencing technology provides data support for constructing cell type and state specific gene regulatory networks. This study proposes a method for inferring cell type and state specific gene regulatory networks based on scRNA-seq data, called inferCSN. Firstly, inferCSN infers pseudo temporal information from scRNA-seq data and reorders cells based on this information. Because of the uneven distribution of cells in pseudo temporal information, the regulatory relationship tends to lean towards the high-density areas of cells. Therefore, based on the cell state, we divide the cells into different windows to eliminate the temporal information differences caused by cell density. Then, a sparse regression model, combined with reference network information, is used to construct a cell type-specific regulatory network (CSN) for each window. The experimental results on both simulated and real scRNA-seq datasets show that inferCSN outperforms other methods in multiple performance metrics. In addition, experimental results on datasets of different types (such as steady-state and linear datasets) and scales (different cell and gene numbers) show that inferCSN is robust. To further demonstrate the effectiveness and application prospects of inferCSN, we analyzed the gene regulatory network of T cells in different states and different tumor subclons within the tumor microenvironment, and we found that comparing the regulatory networks in different states can reveal immune suppression related signaling pathways.
基于批量测序数据的基因调控网络推断方法不仅混淆了不同类型的细胞,还忽略了网络随细胞状态动态变化的现象。单细胞转录组测序技术为构建细胞类型和状态特异性基因调控网络提供了数据支持。本研究提出了一种基于scRNA-seq数据推断细胞类型和状态特异性基因调控网络的方法,称为inferCSN。首先,inferCSN从scRNA-seq数据中推断伪时间信息,并基于此信息对细胞进行重新排序。由于细胞在伪时间信息中的分布不均匀,调控关系往往倾向于细胞的高密度区域。因此,基于细胞状态,我们将细胞划分为不同的窗口,以消除细胞密度引起的时间信息差异。然后,结合参考网络信息,使用稀疏回归模型为每个窗口构建细胞类型特异性调控网络(CSN)。在模拟和真实scRNA-seq数据集上的实验结果表明,inferCSN在多个性能指标上优于其他方法。此外,在不同类型(如稳态和线性数据集)和规模(不同细胞和基因数量)的数据集上的实验结果表明,inferCSN具有鲁棒性。为了进一步证明inferCSN的有效性和应用前景,我们分析了肿瘤微环境中不同状态的T细胞和不同肿瘤亚克隆的基因调控网络,发现比较不同状态下的调控网络可以揭示免疫抑制相关信号通路。