Todorov Helena, Cannoodt Robrecht, Saelens Wouter, Saeys Yvan
Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.
Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
Methods Mol Biol. 2019;1883:235-249. doi: 10.1007/978-1-4939-8882-2_10.
Recent technological breakthroughs in single-cell RNA sequencing are revolutionizing modern experimental design in biology. The increasing size of the single-cell expression data from which networks can be inferred allows identifying more complex, non-linear dependencies between genes. Moreover, the inter-cellular variability that is observed in single-cell expression data can be used to infer not only one global network representing all the cells, but also numerous regulatory networks that are more specific to certain conditions. By experimentally perturbing certain genes, the deconvolution of the true contribution of these genes can also be greatly facilitated. In this chapter, we will therefore tackle the advantages of single-cell transcriptomic data and show how new methods exploit this novel data type to enhance the inference of gene regulatory networks.
单细胞RNA测序技术的最新突破正在彻底改变生物学中的现代实验设计。可从中推断网络的单细胞表达数据规模不断增大,这使得能够识别基因之间更复杂的非线性依赖关系。此外,在单细胞表达数据中观察到的细胞间变异性不仅可用于推断代表所有细胞的一个全局网络,还可用于推断许多特定于某些条件的调控网络。通过对某些基因进行实验性扰动,这些基因真实贡献的反卷积也可得到极大促进。因此,在本章中,我们将探讨单细胞转录组数据的优势,并展示新方法如何利用这种新型数据类型来增强基因调控网络的推断。