Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
Depto. Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
Biochem Biophys Res Commun. 2018 Mar 29;498(2):319-326. doi: 10.1016/j.bbrc.2017.09.086. Epub 2017 Sep 25.
Describing the regulation of chromatin segments by protein recognition events constitute a major goal in biology and biotechnology. Despite astonishing experimental developments, achieving nearly atomistic spatial/temporal resolution on such macromolecular systems remains a big challenge owing to the intrinsic flexibility of large biological assemblies. Although computer simulations have become a reliable complement to experimental techniques, computational cost limits their routine applications to relatively small systems. However, the development of accurate and cost-effective coarse-grained (CG) models helps to bridge the gap between molecular dynamics simulations and biologically relevant scales. Performing an exhaustive search on a set of well-resolved crystallographic protein-DNA complexes, we introduced improvements on the CG SIRAH force field to describe protein-DNA interfaces. Modifications were validated against a set of non redundant structures and applied to the simulation of the longest DNA segment in complex with proteins that has been crystallized to date, i.e. a tetranucleosome. Multimicrosecond simulation of this small chromatin segment evidences a large mobility of the external DNA filaments, which is consistent with results from FRET experiments in solution. Moreover, we found that the sub-microsecond dynamics of DNA is strongly modulated by the quaternary structure, partially overcoming the intrinsic dynamics dictated by the primary structure.
描述蛋白质识别事件对染色质片段的调控是生物学和生物技术的主要目标之一。尽管实验技术取得了惊人的发展,但由于大型生物组装体的固有灵活性,在这些大分子系统上实现几乎原子级的时空分辨率仍然是一个巨大的挑战。尽管计算机模拟已成为实验技术的可靠补充,但计算成本限制了它们在相对较小系统上的常规应用。然而,开发准确且经济高效的粗粒化 (CG) 模型有助于弥合分子动力学模拟和与生物学相关尺度之间的差距。我们在一组分辨率良好的晶体蛋白-DNA 复合物上进行了详尽的搜索,引入了对 CG SIRAH 力场的改进,以描述蛋白-DNA 界面。对一组非冗余结构进行了验证,并将其应用于迄今为止已结晶的与蛋白质结合的最长 DNA 片段的模拟,即四联体核小体。对这个小染色质片段的多微秒模拟表明,外部 DNA 纤维具有很大的流动性,这与溶液中的 FRET 实验结果一致。此外,我们发现 DNA 的亚微秒动力学受到四级结构的强烈调节,部分克服了由一级结构决定的固有动力学。