Suppr超能文献

包载依替巴肽的RGD修饰纳米脂质体的优化

Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide.

作者信息

Bardania Hassan, Shojaosadati Seyed Abbas, Kobarfard Farzad, Dorkoosh Farid

机构信息

Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

Department of Biotechnology Group Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Iran J Biotechnol. 2016 Jun;14(2):33-40. doi: 10.15171/ijb.1399.

Abstract

BACKGROUND

Eptifibatide (Integrilin) is an intravenous (IV) peptide drug that selectively inhibits ligand binding to the platelet GP IIb/IIIa receptor. It is an efficient peptide drug, however has a short half-life. Therefore, antithrombotic agents like eptifibatide are required to become improved with a protected and targeted delivery system such as using nano-liposomes to the site of thrombus.

OBJECTIVES

The goal in the present report was to optimize encapsulation efficiency of the eptifibatide into Arg-Gly-Asp (RGD)-modified nano-liposomes (RMNL). As well, it was intended to evaluate the effect of sodium lauryl sulfate (SLS) on drug release.

MATERIALS AND METHODS

The effect of five independent variables including number of freeze/thawing cycles, concentration of eptifibatide, 1,2-distearoyl--glycero-3-phosphocholine (DSPC), cholesterol, and dipalmitoyl-GRGDSPA peptide on drug entrapment efficiency (DEE) was investigated using response surface methodology (RSM). The effect of different concentrations of SLS on encapsulation and drug release from RMNL was also investigated. The size and morphology of RMNL were characterized using transmission electron microscopy (TEM).

RESULTS

The maximum DEE (38%) was obtained with 7 freeze/thawing cycles, 3.65 mmoL eptifibatide, 7 mM DSPC, 3 mM cholesterol, and 1 mM dipalmitoyl- GRGDSPA peptide. SLS has significantly increased the drug release from RMNL, although its effect on encapsulation efficiency was not significant.

CONCLUSIONS

The optimization of the formulations for valuable and expensive peptide drugs is essential to have the maximum encapsulation efficiency and the minimum experiments.

摘要

背景

依替巴肽(Integrilin)是一种静脉注射(IV)肽类药物,可选择性抑制配体与血小板糖蛋白IIb/IIIa受体的结合。它是一种有效的肽类药物,但半衰期较短。因此,像依替巴肽这样的抗血栓药物需要通过如使用纳米脂质体将其递送至血栓部位的保护和靶向递送系统来进行改进。

目的

本报告的目标是优化依替巴肽在精氨酸-甘氨酸-天冬氨酸(RGD)修饰的纳米脂质体(RMNL)中的包封效率。此外,旨在评估十二烷基硫酸钠(SLS)对药物释放的影响。

材料与方法

使用响应面法(RSM)研究了包括冻融循环次数、依替巴肽浓度、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)、胆固醇和二棕榈酰-GRGDSPA肽在内的五个独立变量对药物包封率(DEE)的影响。还研究了不同浓度的SLS对RMNL包封和药物释放的影响。使用透射电子显微镜(TEM)对RMNL的大小和形态进行了表征。

结果

在7次冻融循环、3.65 mmol依替巴肽、7 mM DSPC、3 mM胆固醇和1 mM二棕榈酰-GRGDSPA肽的条件下获得了最大包封率(38%)。SLS显著增加了RMNL的药物释放,尽管其对包封效率的影响不显著。

结论

对于有价值且昂贵的肽类药物,优化制剂以实现最大包封效率并减少实验次数至关重要。

相似文献

1
Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide.
Iran J Biotechnol. 2016 Jun;14(2):33-40. doi: 10.15171/ijb.1399.
3
RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect.
Iran J Biotechnol. 2019 Apr 20;17(2):e2008. doi: 10.21859/ijb.2008. eCollection 2019 Apr.
4
Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity.
J Thromb Thrombolysis. 2017 Feb;43(2):184-193. doi: 10.1007/s11239-016-1440-6.
6
Clinical pharmacology of eptifibatide.
Am J Cardiol. 1997 Aug 18;80(4A):11B-20B. doi: 10.1016/s0002-9149(97)00572-9.
7
Development of eptifibatide.
Am Heart J. 1999 Dec;138(6 Pt 1):1093-104. doi: 10.1016/s0002-8703(99)70075-x.
9
Platelet aggregation inhibition with glycoprotein IIb--IIIa inhibitors.
J Thromb Thrombolysis. 2001 Apr;11(2):99-110. doi: 10.1023/a:1011216414539.
10
Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa.
Expert Opin Pharmacother. 2002 Aug;3(8):1199-210. doi: 10.1517/14656566.3.8.1199.

引用本文的文献

1
Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer.
IET Nanobiotechnol. 2024 Nov 25;2024:4959295. doi: 10.1049/nbt2/4959295. eCollection 2024.
2
RGD-decorated nanoliposomes for combined delivery of arsenic trioxide and curcumin to prostate cancer cells.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr;397(4):2347-2357. doi: 10.1007/s00210-023-02752-7. Epub 2023 Oct 13.
3
Evaluation of the Biodistribution of Arginine, glycine, aspartic acid peptide-modified Nanoliposomes Containing Curcumin in Rats.
Iran J Biotechnol. 2022 Apr 1;20(2):e2990. doi: 10.30498/ijb.2021.272168.2990. eCollection 2022 Apr.
4
Synthesis and Characterization of Fucoidan-Chitosan Nanoparticles Targeting P-Selectin for Effective Atherosclerosis Therapy.
Oxid Med Cell Longev. 2022 Sep 9;2022:8006642. doi: 10.1155/2022/8006642. eCollection 2022.
6
Facile Method for Morphological Characterization at Nano Scale.
Iran J Biotechnol. 2020 Jul 1;18(3):e2645. doi: 10.30498/IJB.2020.2645. eCollection 2020 Jul.
9
RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect.
Iran J Biotechnol. 2019 Apr 20;17(2):e2008. doi: 10.21859/ijb.2008. eCollection 2019 Apr.
10
Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity.
J Thromb Thrombolysis. 2017 Feb;43(2):184-193. doi: 10.1007/s11239-016-1440-6.

本文引用的文献

1
Targeted thrombolysis strategies for neuroprotective effect.
Neural Regen Res. 2014 Jul 1;9(13):1316-22. doi: 10.4103/1673-5374.137580.
3
Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes.
Int J Nanomedicine. 2014 Apr 29;9:2005-17. doi: 10.2147/IJN.S60674. eCollection 2014.
4
Nanomedicine-based strategies for treatment of atherosclerosis.
Trends Mol Med. 2014 May;20(5):271-81. doi: 10.1016/j.molmed.2013.12.001. Epub 2014 Mar 1.
5
Liposome: classification, preparation, and applications.
Nanoscale Res Lett. 2013 Feb 22;8(1):102. doi: 10.1186/1556-276X-8-102.
7
Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents.
Int J Pharm. 2011 Jan 17;403(1-2):254-61. doi: 10.1016/j.ijpharm.2010.10.028. Epub 2010 Oct 31.
8
Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology.
AAPS PharmSciTech. 2010 Sep;11(3):1206-11. doi: 10.1208/s12249-010-9487-8. Epub 2010 Aug 3.
9
The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes.
AAPS PharmSciTech. 2010 Jun;11(2):966-75. doi: 10.1208/s12249-010-9463-3. Epub 2010 May 29.
10
In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes.
J Biomed Mater Res A. 2010 Jun 1;93(3):1004-15. doi: 10.1002/jbm.a.32549.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验