Suppr超能文献

PSI之后首次CASP实验(2016年5月至8月的CASP12)的目标亮点。

Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016).

作者信息

Kryshtafovych Andriy, Albrecht Reinhard, Baslé Arnaud, Bule Pedro, Caputo Alessandro T, Carvalho Ana Luisa, Chao Kinlin L, Diskin Ron, Fidelis Krzysztof, Fontes Carlos M G A, Fredslund Folmer, Gilbert Harry J, Goulding Celia W, Hartmann Marcus D, Hayes Christopher S, Herzberg Osnat, Hill Johan C, Joachimiak Andrzej, Kohring Gert-Wieland, Koning Roman I, Lo Leggio Leila, Mangiagalli Marco, Michalska Karolina, Moult John, Najmudin Shabir, Nardini Marco, Nardone Valentina, Ndeh Didier, Nguyen Thanh-Hong, Pintacuda Guido, Postel Sandra, van Raaij Mark J, Roversi Pietro, Shimon Amir, Singh Abhimanyu K, Sundberg Eric J, Tars Kaspars, Zitzmann Nicole, Schwede Torsten

机构信息

Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616.

Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):27-50. doi: 10.1002/prot.25392. Epub 2017 Oct 16.

Abstract

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.

摘要

所选半胱天冬酶12(CASP12)靶点的功能和生物学意义由这些结构的作者进行了描述。晶体学家讨论了靶点蛋白最有趣的结构特征,并评估了这些特征在提交给CASP12实验的预测中是否得到了正确再现。

相似文献

1
Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016).
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):27-50. doi: 10.1002/prot.25392. Epub 2017 Oct 16.
2
Some of the most interesting CASP11 targets through the eyes of their authors.
Proteins. 2016 Sep;84 Suppl 1(Suppl Suppl 1):34-50. doi: 10.1002/prot.24942. Epub 2015 Nov 16.
3
Target highlights in CASP13: Experimental target structures through the eyes of their authors.
Proteins. 2019 Dec;87(12):1037-1057. doi: 10.1002/prot.25805. Epub 2019 Sep 9.
4
Assessment of the model refinement category in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):152-167. doi: 10.1002/prot.25409. Epub 2017 Nov 29.
5
Target highlights in CASP14: Analysis of models by structure providers.
Proteins. 2021 Dec;89(12):1647-1672. doi: 10.1002/prot.26247. Epub 2021 Oct 10.
6
Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):51-66. doi: 10.1002/prot.25407. Epub 2017 Nov 7.
7
Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
Proteins. 2018 Mar;86 Suppl 1:97-112. doi: 10.1002/prot.25423. Epub 2017 Nov 29.
9
Improved protein contact predictions with the MetaPSICOV2 server in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):78-83. doi: 10.1002/prot.25379. Epub 2017 Sep 29.
10
Protein structure prediction using Rosetta in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):113-121. doi: 10.1002/prot.25390. Epub 2017 Oct 8.

引用本文的文献

2
Functional relevance of CASP16 nucleic acid predictions as evaluated by structure providers.
bioRxiv. 2025 Apr 18:2025.04.15.649049. doi: 10.1101/2025.04.15.649049.
3
Protein target highlights in CASP15: Analysis of models by structure providers.
Proteins. 2023 Dec;91(12):1571-1599. doi: 10.1002/prot.26545. Epub 2023 Jul 26.
4
RNA target highlights in CASP15: Evaluation of predicted models by structure providers.
Proteins. 2023 Dec;91(12):1600-1615. doi: 10.1002/prot.26550. Epub 2023 Jul 19.
5
Metagenome diversity illuminates origins of pathogen effectors.
bioRxiv. 2023 Feb 27:2023.02.26.530123. doi: 10.1101/2023.02.26.530123.
6
Cryptic Genes for Interbacterial Antagonism Distinguish Species Infecting Blacklegged Ticks From Other Pathogens.
Front Cell Infect Microbiol. 2022 May 3;12:880813. doi: 10.3389/fcimb.2022.880813. eCollection 2022.
7
Target highlights in CASP14: Analysis of models by structure providers.
Proteins. 2021 Dec;89(12):1647-1672. doi: 10.1002/prot.26247. Epub 2021 Oct 10.
9
Flexible Backbone Assembly and Refinement of Symmetrical Homomeric Complexes.
Structure. 2019 Jun 4;27(6):1041-1051.e8. doi: 10.1016/j.str.2019.03.014. Epub 2019 Apr 18.
10
Critical assessment of methods of protein structure prediction (CASP)-Round XII.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):7-15. doi: 10.1002/prot.25415. Epub 2017 Dec 15.

本文引用的文献

1
Assessment of protein assembly prediction in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):247-256. doi: 10.1002/prot.25408. Epub 2017 Nov 8.
2
Structure of a Reptilian Adenovirus Reveals a Phage Tailspike Fold Stabilizing a Vertebrate Virus Capsid.
Structure. 2017 Oct 3;25(10):1562-1573.e5. doi: 10.1016/j.str.2017.08.007. Epub 2017 Sep 21.
3
Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8544-8549. doi: 10.1073/pnas.1703682114. Epub 2017 Jul 24.
4
Structural Basis for Receptor Selectivity by the Whitewater Arroyo Mammarenavirus.
J Mol Biol. 2017 Sep 1;429(18):2825-2839. doi: 10.1016/j.jmb.2017.07.011. Epub 2017 Jul 21.
7
CdiA Effectors Use Modular Receptor-Binding Domains To Recognize Target Bacteria.
mBio. 2017 Mar 28;8(2):e00290-17. doi: 10.1128/mBio.00290-17.
8
Complex pectin metabolism by gut bacteria reveals novel catalytic functions.
Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22.
9
Self-Oligomerizing Structure of the Flagellar Cap Protein FliD and Its Implication in Filament Assembly.
J Mol Biol. 2017 Mar 24;429(6):847-857. doi: 10.1016/j.jmb.2017.02.001. Epub 2017 Feb 6.
10
Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1128-E1137. doi: 10.1073/pnas.1616783114. Epub 2017 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验