Suppr超能文献

基于形状模型引导的随机森林的对比超声心动图序列全自动心肌分割。

Fully Automatic Myocardial Segmentation of Contrast Echocardiography Sequence Using Random Forests Guided by Shape Model.

出版信息

IEEE Trans Med Imaging. 2018 May;37(5):1081-1091. doi: 10.1109/TMI.2017.2747081. Epub 2017 Sep 26.

Abstract

Myocardial contrast echocardiography (MCE) is an imaging technique that assesses left ventricle function and myocardial perfusion for the detection of coronary artery diseases. Automatic MCE perfusion quantification is challenging and requires accurate segmentation of the myocardium from noisy and time-varying images. Random forests (RF) have been successfully applied to many medical image segmentation tasks. However, the pixel-wise RF classifier ignores contextual relationships between label outputs of individual pixels. RF which only utilizes local appearance features is also susceptible to data suffering from large intensity variations. In this paper, we demonstrate how to overcome the above limitations of classic RF by presenting a fully automatic segmentation pipeline for myocardial segmentation in full-cycle 2-D MCE data. Specifically, a statistical shape model is used to provide shape prior information that guide the RF segmentation in two ways. First, a novel shape model (SM) feature is incorporated into the RF framework to generate a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to refine and constrain the final segmentation to plausible myocardial shapes. We further improve the performance by introducing a bounding box detection algorithm as a preprocessing step in the segmentation pipeline. Our approach on 2-D image is further extended to 2-D+t sequences which ensures temporal consistency in the final sequence segmentations. When evaluated on clinical MCE data sets, our proposed method achieves notable improvement in segmentation accuracy and outperforms other state-of-the-art methods, including the classic RF and its variants, active shape model and image registration.

摘要

心肌声学造影(MCE)是一种评估左心室功能和心肌灌注的成像技术,用于检测冠状动脉疾病。自动 MCE 灌注定量分析具有挑战性,需要从噪声和时变图像中准确分割心肌。随机森林(RF)已成功应用于许多医学图像分割任务。然而,像素级 RF 分类器忽略了各个像素的标签输出之间的上下文关系。仅利用局部外观特征的 RF 也容易受到数据强度变化较大的影响。在本文中,我们通过提出一种用于全周期 2D MCE 数据中心肌分割的全自动分割流水线,展示了如何克服经典 RF 的上述限制。具体来说,使用统计形状模型提供形状先验信息,以两种方式指导 RF 分割。首先,将一种新颖的形状模型(SM)特征纳入 RF 框架中,以生成更准确的 RF 概率图。其次,将形状模型拟合到 RF 概率图中,以细化和约束最终分割为合理的心肌形状。我们通过在分割流水线中引入边界框检测算法作为预处理步骤,进一步提高了性能。我们的 2D 图像方法进一步扩展到 2D+t 序列,以确保最终序列分割的时间一致性。在临床 MCE 数据集上进行评估时,我们提出的方法在分割准确性方面取得了显著提高,优于其他最先进的方法,包括经典 RF 及其变体、主动形状模型和图像配准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验