Suppr超能文献

基于改进卷积神经网络的 CT 图像边缘分割优化算法。

Optimization algorithm of CT image edge segmentation using improved convolution neural network.

机构信息

College of Electronic Information Technology, Jiamusi University, Jiamusi, China.

出版信息

PLoS One. 2022 Jun 3;17(6):e0265338. doi: 10.1371/journal.pone.0265338. eCollection 2022.

Abstract

To address the problem of high failure rate and low accuracy in computed tomography (CT) image edge segmentation, we proposed a CT sequence image edge segmentation optimization algorithm using improved convolution neural network. Firstly, the pattern clustering algorithm is applied to cluster the pixels with relationship in the CT sequence image space to extract the edge information of the real CT image; secondly, Euclidean distance is used to calculate similarity and measure similarity, according to the measurement results, convolution neural network (CNN) hierarchical optimization is carried out to improve the convergence ability of CNN; finally, the pixel classification of CT sequence images is carried out, and the edge segmentation of CT sequence images is optimized according to the classification results. The results show that the overall recognition rate of this method is at a high level. The training time is obviously reduced when the training times exceed 12 times, the recall rate is always about 90%, and the accuracy of image segmentation is high, which solves the problem of large failure rate and low accuracy.

摘要

为了解决计算机断层扫描(CT)图像边缘分割中高失败率和低准确性的问题,我们提出了一种使用改进的卷积神经网络的 CT 序列图像边缘分割优化算法。首先,应用模式聚类算法对 CT 序列图像空间中的具有关系的像素进行聚类,以提取真实 CT 图像的边缘信息;其次,根据测量结果,使用欧几里得距离计算相似性并测量相似性,对卷积神经网络(CNN)进行分层优化,以提高 CNN 的收敛能力;最后,对 CT 序列图像进行像素分类,并根据分类结果优化 CT 序列图像的边缘分割。结果表明,该方法的整体识别率处于较高水平。当训练次数超过 12 次时,训练时间明显减少,召回率始终约为 90%,图像分割的准确性较高,解决了高失败率和低准确性的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaf/9165790/9e44e280f77d/pone.0265338.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验