Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
Shantou University Medical College, Shantou, Guangdong, China.
Int J Cardiovasc Imaging. 2021 Jun;37(6):1967-1978. doi: 10.1007/s10554-021-02181-8. Epub 2021 Feb 17.
Quantitative myocardial contrast echocardiography (MCE) has been proved to be valuable in detecting myocardial ischemia. During quantitative MCE analysis, myocardial segmentation is a critical step in determining accurate region of interests (ROIs). However, traditional myocardial segmentation mainly relies on manual tracing of myocardial contours, which is time-consuming and laborious. To solve this problem, we propose a fully automatic myocardial segmentation framework that can segment myocardial regions in MCE accurately without human intervention. A total of 100 patients' MCE sequences were divided into a training set and a test set according to a 7: 3 proportion for analysis. We proposed a bi-directional training schema, which incorporated temporal information of forward and backward direction among frames in MCE sequences to ensure temporal consistency by combining convolutional neural network with recurrent neural network. Experiment results demonstrated that compared with a traditional segmentation model (U-net) and the model considering only forward temporal information (U-net + forward), our framework achieved the highest segmentation precision in Dice coefficient (U-net vs U-net + forward vs our framework: 0.78 ± 0.07 vs 0.79 ± 0.07 vs 0.81 ± 0.07, p < 0.01), Intersection over Union (0.65 ± 0.09 vs 0.66 ± 0.09 vs 0.68 ± 0.09, p < 0.01), and lowest Hausdorff Distance (32.68 ± 14.6 vs 28.69 ± 13.18 vs 27.59 ± 12.82 pixel point, p < 0.01). In the visual grading study, the performance of our framework was the best among these three models (52.47 ± 4.29 vs 54.53 ± 5.10 vs 57.30 ± 4.73, p < 0.01). A case report on a randomly selected subject for perfusion analysis showed that the perfusion parameters generated by using myocardial segmentation of our proposed framework were similar to that of the expert annotation. The proposed framework could generate more precise myocardial segmentation when compared with traditional methods. The perfusion parameters generated by these myocardial segmentations have a good similarity to that of manual annotation, suggesting that it has the potential to be utilized in routine clinical practice.
定量心肌对比超声心动图(MCE)已被证明在检测心肌缺血方面具有重要价值。在定量 MCE 分析中,心肌分段是确定准确感兴趣区域(ROI)的关键步骤。然而,传统的心肌分段主要依赖于心肌轮廓的手动追踪,这既耗时又费力。为了解决这个问题,我们提出了一种全自动的心肌分段框架,可以在没有人工干预的情况下准确地对 MCE 中的心肌区域进行分段。总共 100 名患者的 MCE 序列根据 7:3 的比例分为训练集和测试集进行分析。我们提出了一种双向训练方案,该方案在 MCE 序列中结合了帧间前后向的时间信息,通过将卷积神经网络与循环神经网络相结合,确保时间一致性。实验结果表明,与传统的分割模型(U-net)和仅考虑前向时间信息的模型(U-net+forward)相比,我们的框架在 Dice 系数(U-net 与 U-net+forward 与我们的框架:0.78±0.07 与 0.79±0.07 与 0.81±0.07,p<0.01)、交并比(0.65±0.09 与 0.66±0.09 与 0.68±0.09,p<0.01)和最小 Hausdorff 距离(32.68±14.6 与 28.69±13.18 与 27.59±12.82 像素点,p<0.01)方面达到了最高的分割精度。在视觉分级研究中,这三种模型中,我们的框架表现最好(52.47±4.29 与 54.53±5.10 与 57.30±4.73,p<0.01)。对一个随机选择的灌注分析对象的病例报告显示,使用我们提出的框架进行心肌分段生成的灌注参数与专家注释相似。与传统方法相比,所提出的框架可以生成更精确的心肌分段。这些心肌分段生成的灌注参数与手动注释具有很好的相似性,表明它有可能在常规临床实践中得到应用。