Suppr超能文献

HiDi:一种使用自适应分化进行大规模动态调控网络重构的高效反向工程模式。

HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.

机构信息

Algorithmic Dynamics Lab.

Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Solna and Science for Life Laboratory (SciLifeLab), Karolinska Institute, Stockholm, Sweden.

出版信息

Bioinformatics. 2017 Dec 15;33(24):3964-3972. doi: 10.1093/bioinformatics/btx501.

Abstract

MOTIVATION

The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks.

RESULTS

We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes.

AVAILABILITY AND IMPLEMENTATION

The Matlab code of the HiDi implementation is available at: www.complexitycalculator.com/HiDiScript.zip.

CONTACT

hzenilc@gmail.com or narsis.kiani@ki.se.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

使用微分方程 (ODE) 是网络推断最有前途的方法之一。然而,由于参数估计的困难和缺乏可扩展性,基于 ODE 的方法的成功受到了限制。在这里,我们引入了一种新的方法和流程,基于导数计算方案的改进和预筛选步骤来减少可能的链接数量,从时间序列和扰动数据的基因表达中反向工程基因调控网络。该方法引入了具有自适应数值微分的线性微分方程模型,可扩展到极其庞大的调控网络。

结果

我们使用 DREAM4 和 DREAM5 挑战中的测试数据,证明了该方法在应用于实验和合成数据时优于当前最先进的方法的能力。我们的方法显示出更高的准确性和可扩展性。我们根据数据集大小和噪声水平对该管道的性能进行了基准测试。我们表明,在各种网络大小下,计算时间是线性的。

可用性和实现

HiDi 的 Matlab 代码可在:www.complexitycalculator.com/HiDiScript.zip 获得。

联系方式

hzenilc@gmail.comnarsis.kiani@ki.se

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验